Taux de dispersion des valeurs propres en ACP, AC et ACM
Mathématiques informatique et sciences humaines, Volume 144 (1998), pp. 15-28.

We define the quadratic concentration rate of a positive mesure, or quadratic dispersion rate of the values of its elementary density. When applied on the eigenvalues of a cloud of points in an Euclidean space, this rate is geometrically interpreted as an index of non-sphericity of the cloud, which accounts for its capacity to be well summarized by the first axis or axes. We provide and comment upon the expressions of corrected variance and dispersion rate of eigenvalues for the most usual methods of geometric data analysis : principal component analysis (weighted PCA, simple and standard) correspondence analysis (CA) and multiple correspondence analysis (MCA). These relationships particularly show that in standard PCA and in MCA, the average intensity of binary relations between variables is geometrically expressed by the non-sphericity of clouds of points.

Nous définissons le taux quadratique de concentration d'une mesure positive, ou taux quadratique de dispersion des valeurs de sa densité élémentaire. Appliqué aux valeurs propres d'un nuage de points dans un espace euclidien, ce taux s'interprète géométriquement comme un indice de non-sphéricité du nuage, rendant compte de sa capacité à être bien résumé par le(s) premier(s) axe(s). Nous donnons, en les commentant, les expressions de la variance corrigée et du taux de dispersion des valeurs propres pour les méthodes les plus usuelles d'analyse géométrique des données : analyse en composantes principales (ACP pondérée, simple et normée), analyse des correspondances (AC) et analyse des correspondances multiples (ACM). Ces relations montrent notamment qu'en ACP normée et en ACM l'intensité moyenne des liaisons binaires entre les variables s'exprime géométriquement par la non-sphéricité des nuages de points.

@article{MSH_1998__144__15_0,
     author = {Durand, Jean-Luc},
     title = {Taux de dispersion des valeurs propres en {ACP,} {AC} et {ACM}},
     journal = {Math\'ematiques informatique et sciences humaines},
     pages = {15--28},
     publisher = {Ecole des hautes-\'etudes en sciences sociales},
     volume = {144},
     year = {1998},
     mrnumber = {1692553},
     language = {fr},
     url = {http://www.numdam.org/item/MSH_1998__144__15_0/}
}
TY  - JOUR
AU  - Durand, Jean-Luc
TI  - Taux de dispersion des valeurs propres en ACP, AC et ACM
JO  - Mathématiques informatique et sciences humaines
PY  - 1998
SP  - 15
EP  - 28
VL  - 144
PB  - Ecole des hautes-études en sciences sociales
UR  - http://www.numdam.org/item/MSH_1998__144__15_0/
LA  - fr
ID  - MSH_1998__144__15_0
ER  - 
%0 Journal Article
%A Durand, Jean-Luc
%T Taux de dispersion des valeurs propres en ACP, AC et ACM
%J Mathématiques informatique et sciences humaines
%D 1998
%P 15-28
%V 144
%I Ecole des hautes-études en sciences sociales
%U http://www.numdam.org/item/MSH_1998__144__15_0/
%G fr
%F MSH_1998__144__15_0
Durand, Jean-Luc. Taux de dispersion des valeurs propres en ACP, AC et ACM. Mathématiques informatique et sciences humaines, Volume 144 (1998), pp. 15-28. http://www.numdam.org/item/MSH_1998__144__15_0/

[1] Benzécri J.-P., & Coll., Pratique de l'analyse des données, tome 1: Analyse des correspondances, exposé élémentaire, Paris, Dunod, 2ème édition, 1984. | Zbl

[2] Barbut M., "Diamètres et écarts, une décomposition du coefficient d'inégalité de C. Gini", Mathématiques, Informatique et Sciences humaines, 93, (1986), 61-69. | Numdam | MR | Zbl

[3] Lebart L., Morineau A., Piron M., Statistique exploratoire multidimensionnelle, Paris, Dunod, 1995. | Zbl

[4] Rouanet H., Le Roux B., Analyse des données multidimensionnelles, Paris, Dunod, 1993. | MR

[5] Rouanet H., Lepine D., "Structures linéaires et analyse des comparaisons ", Mathématiques, Informatique et Sciences humaines, 56, (1976), 5-46. | Numdam | MR | Zbl