We introduce a new stable MINI-element pair for incompressible Stokes equations on quadrilateral meshes, which uses the smallest number of bubbles for the velocity. The pressure is discretized with the P1-midpoint-edge-continuous elements and each component of the velocity field is done with the standard Q1-conforming elements enriched by one bubble a quadrilateral. The superconvergence in the pressure of the proposed pair is analyzed on uniform rectangular meshes, and tested numerically on uniform and non-uniform meshes.
Keywords: MINI-element, superconvergence
@article{M2AN_2014__48_4_955_0,
author = {Kwon, Oh-In and Park, Chunjae},
title = {A new quadrilateral {MINI-element} for {Stokes} equations},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {955--968},
year = {2014},
publisher = {EDP Sciences},
volume = {48},
number = {4},
doi = {10.1051/m2an/2013129},
mrnumber = {3264342},
zbl = {1299.76140},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2013129/}
}
TY - JOUR AU - Kwon, Oh-In AU - Park, Chunjae TI - A new quadrilateral MINI-element for Stokes equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 955 EP - 968 VL - 48 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2013129/ DO - 10.1051/m2an/2013129 LA - en ID - M2AN_2014__48_4_955_0 ER -
%0 Journal Article %A Kwon, Oh-In %A Park, Chunjae %T A new quadrilateral MINI-element for Stokes equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 955-968 %V 48 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2013129/ %R 10.1051/m2an/2013129 %G en %F M2AN_2014__48_4_955_0
Kwon, Oh-In; Park, Chunjae. A new quadrilateral MINI-element for Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 955-968. doi: 10.1051/m2an/2013129
[1] , and , A stable finite element for the Stokes equations. CALCOLO 21 (1984) 337-344. | Zbl | MR
[2] , The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. | Zbl | MR
[3] , The quadrilateral ‘Mini' finite element for the Stokes problem. Comput. Methods Appl. Mech. Eng. 143 (1997) 41-47. | Zbl | MR
[4] , On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Anal. Numer. R2 8 (1974) 129-151. | Zbl | MR | Numdam
[5] , , and , Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. RAIRO: M2AN 33 (1999) 747-770. | Zbl | MR | Numdam
[6] , and , Supercloseness and superconvergence of stabilized low order finite element discretization of the Stokes Problem. Math. Comput. 80 (2011) 697-722. | MR
[7] , and , Continuous Q1-Q1 Stokes elements stabilized with non-conforming null edge average velocity functions. Math. Models Meth. Appl. Sci. 17 (2007) 439-459. | Zbl | MR
[8] and , Finite element methods for the Navier-Stokes equations: Theory and Algorithms. Springer-Verlag, New York (1986). | Zbl | MR
[9] and , P1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 624-640. | Zbl | MR
[10] and , Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Eq. 8 (1992) 97-111. | Zbl | MR
Cité par Sources :





