This paper focuses on a one-dimensional wave equation being subjected to a unilateral boundary condition. Under appropriate regularity assumptions on the initial data, a new proof of existence and uniqueness results is proposed. The mass redistribution method, which is based on a redistribution of the body mass such that there is no inertia at the contact node, is introduced and its convergence is proved. Finally, some numerical experiments are reported.
Keywords: existence, uniqueness, convergence, mass redistribution method, variational inequality, unilateral contact
@article{M2AN_2014__48_4_1147_0,
author = {Dabaghi, Farshid and Petrov, Adrien and Pousin, J\'er\^ome and Renard, Yves},
title = {Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1147--1169},
year = {2014},
publisher = {EDP Sciences},
volume = {48},
number = {4},
doi = {10.1051/m2an/2013133},
mrnumber = {3264349},
zbl = {1297.35148},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2013133/}
}
TY - JOUR AU - Dabaghi, Farshid AU - Petrov, Adrien AU - Pousin, Jérôme AU - Renard, Yves TI - Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1147 EP - 1169 VL - 48 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2013133/ DO - 10.1051/m2an/2013133 LA - en ID - M2AN_2014__48_4_1147_0 ER -
%0 Journal Article %A Dabaghi, Farshid %A Petrov, Adrien %A Pousin, Jérôme %A Renard, Yves %T Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1147-1169 %V 48 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2013133/ %R 10.1051/m2an/2013133 %G en %F M2AN_2014__48_4_1147_0
Dabaghi, Farshid; Petrov, Adrien; Pousin, Jérôme; Renard, Yves. Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 1147-1169. doi: 10.1051/m2an/2013133
[1] and , A generalized Newton method for contact problems with friction. J. Mech. Theor. Appl. 7 (1988) 67-82. | Zbl | MR
[2] and , Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Engrg. 158 (1998) 269-300. | Zbl | MR
[3] , Approximation of elliptic boundary-value problems. Pure and Applied Mathematics, Vol. XXVI. Wiley-Interscience (1972). | Zbl | MR
[4] , Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 63 (1977) 370-373. | Zbl | MR
[5] , The fundamental theorem of calculus for Lebesgue integral. Divulg. Mat. 8 (2000) 75-85. | Zbl | MR
[6] , Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam (1973). | Zbl | MR
[7] and , Analyse numérique des équations différentielles. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1984). | Zbl | MR
[8] and , Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. INSTN: Collection Enseignement. Masson, Paris (1988). | Zbl
[9] , Multivalued differential equations. Vol. 1 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin (1992). | Zbl | MR
[10] and , Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem. Commun. Math. Sci. 7 (2009) 1063-1072. | Zbl | MR
[11] , and , Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. (2011) 223-249. | MR
[12] and , Theory and practice of finite elements. Appl. Math. Sci., vol. 159. Springer-Verlag, New York (2004). | Zbl | MR
[13] and , Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements. SIAM J. Num. Anal. 47 (2009) 1863-1885. | MR
[14] , Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact. Comput. Methods Appl. Mech. Engrg. 199 (2010) 2941-2957. | Zbl | MR
[15] , , , and , A finite method for a class of contact-impact problems. Comput. Methods Appl. Mech. Engrg. 8 (1976) 249-276. | Zbl
[16] , and , Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A Solids 27 (2008) 918-932. | Zbl | MR
[17] , Energy conservation in Newmark based time integration algorithms. Comput. Methods Appl. Mech. Engrg. 195 (2006) 6110-6124. | Zbl | MR
[18] and , Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Studies Appl. Math. SIAM, Philadelphia, Pa (1988). | Zbl | MR
[19] , A boundary thin obstacle problem for a wave equation. Commun. Partial Differential Eqs. 14 (1989) 1011-1026. | Zbl | MR
[20] and , Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Engrg. 40 (1997) 863-886. | Zbl | MR
[21] and , Improved implicit integrators for transient impact problems-geometric admissibility within the conserving framework. Int. J. Numer. Methods Engrg. 53 (2002) 245-274. | Zbl | MR
[22] and , A wave problem in a half-space with a unilateral constraint at the boundary. J. Differ. Eqs. 53 (1984) 309-361. | Zbl | MR
[23] , Liaisons unilatérales sans frottement et chocs inélastiques. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 296 (1983) 1473-1476. | Zbl | MR
[24] and , Nonsmooth mechanics and applications. Vol. 302 of CISM Courses Lect. Springer-Verlag, Vienna (1988). | Zbl | MR
[25] , Time discretization of vibro-impact. R. Soc. London Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (2001) 2405-2428. | Zbl | MR
[26] and , A numerical scheme for impact problem I. SIAM J. Numer. Anal. 40 (2002) 702-733. | Zbl | MR
[27] and , Approximation et existence en vibro-impact. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 1003-1007. | Zbl | MR
[28] , Generalized Newton's methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Meth. Appl. Mech. Engng. 256 (2013) 38-55. | MR
[29] and , Getfem++. An Open Source generic C++ library for finite element methods. http://home.gna.org/getfem.
[30] , Real and complex analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York, 2nd edn (1974). | Zbl | MR
[31] , A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73 (1980) 138-191. | Zbl | MR
[32] and , Numerical approximation of a wave equation with unilateral constraints. Math. Comput. 53 (1989) 55-79. | Zbl | MR
[33] , and , Efficiency refinements of contact strategies and algorithms in explicit finite element programming. Compt. Plasticity. Edited by Owen, Onate, Hinton, Pineridge (1992) 457-482.
[34] , Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65-96. | Zbl | MR
[35] , Computational contact mechanics. John Wiley and Sons Ltd. (2002).
Cité par Sources :






