A Multiscale Enrichment Procedure for Nonlinear Monotone Operators
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 2, p. 475-491
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

In this paper, multiscale finite element methods (MsFEMs) and domain decomposition techniques are developed for a class of nonlinear elliptic problems with high-contrast coefficients. In the process, existing work on linear problems [Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Submitted.; Y. Efendiev, J. Galvis and X. Wu, J. Comput. Phys. 230 (2011) 937-955; J. Galvis and Y. Efendiev, SIAM Multiscale Model. Simul. 8 (2010) 1461-1483.] is extended to treat a class of nonlinear elliptic operators. The proposed method requires the solutions of (small dimension and local) nonlinear eigenvalue problems in order to systematically enrich the coarse solution space. Convergence of the method is shown to relate to the dimension of the coarse space (due to the enrichment procedure) as well as the coarse mesh size. In addition, it is shown that the coarse mesh spaces can be effectively used in two-level domain decomposition preconditioners. A number of numerical results are presented to complement the analysis.

DOI : https://doi.org/10.1051/m2an/2013116
Classification:  35J60,  65N30
Keywords: generalized multiscale finite element method, nonlinear equations, high-contrast
@article{M2AN_2014__48_2_475_0,
     author = {Efendiev, Y. and Galvis, J. and Presho, M. and Zhou, J.},
     title = {A Multiscale Enrichment Procedure for Nonlinear Monotone Operators},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {2},
     year = {2014},
     pages = {475-491},
     doi = {10.1051/m2an/2013116},
     mrnumber = {3177854},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2014__48_2_475_0}
}
Efendiev, Y.; Galvis, J.; Presho, M.; Zhou, J. A Multiscale Enrichment Procedure for Nonlinear Monotone Operators. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 2, pp. 475-491. doi : 10.1051/m2an/2013116. http://www.numdam.org/item/M2AN_2014__48_2_475_0/

[1] J. Aarnes, S. Krogstad and K. Lie, A hierarchical multiscale method for two-phase flow based on upon mixed finite elements and nonuniform coarse grids. SIAM Multiscale Model. Simul. 5 (2006) 337-363. | MR 2247754 | Zbl 1124.76022

[2] T. Arbogast, G. Pencheva, M. Wheeler and I. Yotov, A multiscale mortar mixed finite element method. SIAM Multiscale Model. Simul. 6 (2007) 319-346. | MR 2306414 | Zbl pre05255539

[3] X. Cai and D. Keyes, Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput. 24 (2002) 183-200. | MR 1924420 | Zbl 1015.65058

[4] X. Chen and Y. Lou, Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model. Indiana Univ. Math. J. 57 (2008) 627-658. | MR 2414330 | Zbl 1153.35056

[5] M. Dryja and W. Hackbusch, On the nonlinear domain decomposition method. BIT 37 (1997) 296-311. | MR 1450962 | Zbl 0891.65126

[6] Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Comput. Method Appl. Math. 12 (2012) 1-22. | MR 3033239 | Zbl 1284.65153

[7] Y. Efendiev, J. Galvis and T. Hou, Generalized Multiscale Finite Element Method. J. Comput. Phys. (2013) 116-135. | MR 3094911

[8] Y. Efendiev, J. Galvis, G. Li and M. Presho, Generalized Multiscale Finite Element Methods. Oversampling strategies. To appear in Int. J. Multiscale Comput. Engrg.

[9] Y. Efendiev, J. Galvis and X. Wu, Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230 (2011) 937-955. | MR 2753343 | Zbl pre05867068

[10] J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media. SIAM Multiscale Model. Simul. 8 (2010) 1461-1483. | MR 2718268 | Zbl 1206.76042

[11] Y. Efendiev and T. Hou, Multiscale Finite Element Methods: Theory and Applications. Springer, New York (2009). | MR 2477579 | Zbl 1163.65080

[12] T. Hou and X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169-189. | MR 1455261 | Zbl 0880.73065

[13] T. Hughes, G. Feijóo, L. Mazzei and J. Quincy, The variational multiscale method - a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg. 166 (1998) 3-24. | MR 1660141 | Zbl 1017.65525

[14] P. Jenny, S. Lee and H. Tchelepi, Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187 (2003) 47-67. | Zbl 1047.76538

[15] T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. BIT 37 (1997) 296-311. | Zbl 1147.65101

[16] P. Solin and S. Giani, An iterative adaptive finite element method for elliptic eigenvalue problems. J. Comput. Appl. Math. 236 (2012) 4582-4599 | MR 2946392 | Zbl 1259.65167

[17] X. Tai and M. Espedal, Rate of convergence of some space decomposition methods for linear and nonlinear problems. Springer-Verlag, Berlin-Heidelburg (2008). | Zbl 0915.65063

[18] J. Xu and L. Zikatanov, On an energy minimizing basis for algebraic multigrid methods. Comput. Visual Sci. 7 (2004) 121-127. | MR 2097099 | Zbl 1077.65130

[19] X. Yao and J. Zhou, Numerical methods for computing nonlinear eigenpairs. Part I. Iso-homogeneous cases. SIAM J. Sci. Comput. 29 (2007) 1355-1374. | MR 2341791 | Zbl 1156.65055

[20] X. Yao and J. Zhou, Numerical methods for computing nonlinear eigenpairs. Part II. Non iso-homogenous cases. SIAM J. Sci. Comp. 30 (2008) 937-956. | MR 2385893 | Zbl 1183.65140

[21] E. Zeidler, Nonlinear Functional Analysis and Its Applications III. Springer-Verlag, New York (1985). | MR 768749 | Zbl 0583.47051