Heumann, Holger; Hiptmair, Ralf
Stabilized Galerkin methods for magnetic advection
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) no. 6 , p. 1713-1732
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
Zbl 1293.76088 | MR 3123373
doi : 10.1051/m2an/2013085
URL stable : http://www.numdam.org/item?id=M2AN_2013__47_6_1713_0

Classification:  65M60,  65M12
Taking the cue from stabilized Galerkin methods for scalar advection problems, we adapt the technique to boundary value problems modeling the advection of magnetic fields. We provide rigorous a priori error estimates for both fully discontinuous piecewise polynomial trial functions and -conforming finite elements.

Bibliographie

[1] S. Agmon, Lectures on elliptic boundary value problems. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London (1965). MR 178246 | Zbl 0142.37401

[2] M.S. Alnæs, A. Logg and K.-A. Mardal, UFC: a Finite Element Code Generation Interface, Chapt. 16. Springer (2012). MR 3075806

[3] D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1-155. MR 2269741 | Zbl 1185.65204

[4] D. Boffi, Approximation of eigenvalues in mixed form, discrete compactness property, and application to hp mixed finite elements. Comput. Meth. Appl. Mech. Eng. 196 (2007) 3672-3681. MR 2339993 | Zbl 1173.65349

[5] D. Boffi, F. Brezzi and L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69 (2000) 121-140. MR 1642801 | Zbl 0938.65126

[6] A. Bossavit, Extrusion, contraction: Their discretization via Whitney forms. COMPEL 22 (2004) 470-480. MR 1999436 | Zbl 1161.76602

[7] F. Brezzi, L.D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Mod. Meth. Appl. Sci. 14 (2004) 1893-1903. MR 2108234 | Zbl 1070.65117

[8] P. Castillo, B. Cockburn and I. Perugi and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676-1706. MR 1813251 | Zbl 0987.65111

[9] M. Clemens, M. Wilke and T. Weiland, Advanced FI2TD algorithms for transient eddy current problems. COMPEL 20 (2001) 365-379. Zbl 0986.78025

[10] A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753-778. MR 2218968 | Zbl 1122.65111

[11] R.S. Falk and G.R. Richter, Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36 (1999) 935-952 (electronic). MR 1688992 | Zbl 0923.65065

[12] K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11 (1958) 333-418. MR 100718 | Zbl 0083.31802

[13] F.G. Fuchs, K.H. Karlsen, S. Mishra and N.H. Risebro, Stable upwind schemes for the magnetic induction equation. ESAIM: M2AN 43 (2009) 825-852. Numdam | MR 2559735 | Zbl 1177.78057

[14] F. Henrotte, H. Heumann, E. Lange and K. Haymeyer, Upwind 3-d vector potential formulation for electromagnetic braking simulations. IEEE Trans. Magn. 46 (2010) 2835-2838.

[15] H. Heumann, Eulerian and Semi-Lagrangian Methods for Advection-Diffusion of Differential Forms, Ph.D. thesis, ETH Zürich, Switzerland (2011).

[16] H. Heumann and R. Hiptmair, Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete Contin. Dyn. Syst. 29 (2011) 1471-1495. MR 2773194 | Zbl 1211.65126

[17] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 237-339 (2002). MR 2009375 | Zbl 1123.78320

[18] P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485-518. MR 2194528 | Zbl 1071.65155

[19] P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: the indefinite case. ESAIM: M2AN 39 (2005) 727-753. Numdam | MR 2165677 | Zbl 1087.65106

[20] P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42 (2004) 434-459. MR 2051073 | Zbl 1084.65115

[21] P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: non-stabilized formulation. J. Sci. Comput. 22/23 (2005) 315-346. MR 2142200 | Zbl 1091.78017

[22] P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133-2163. MR 1897953 | Zbl 1015.65067

[23] T.J.R. Hughes and A. Brooks, A multidimensional upwind scheme with no crosswind diffusion. In Finite Element Methods for Convection Dominated Flows, vol. 34 of AMD, Amer. Soc. Mech. Engrg. New York (1979) 19-35. MR 571679 | Zbl 0423.76067

[24] T.J.R. Hughes, L.P. Franca and G.M. Hulbert, A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 73 (1989) 173-189. MR 1002621 | Zbl 0697.76100

[25] M. Jensen, Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions. Ph.D. thesis, University of Oxford, England (2005).

[26] M. Jensen, On the discontinuous Galerkin method for Friedrichs systems in graph spaces. In Large-scale scientific computing. Lecture Notes in Comput. Sci., vol. 3743. Springer, Berlin (2006) 94-101. MR 2246820 | Zbl 1142.65445

[27] O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374-2399 (electronic). MR 2034620 | Zbl 1058.65120

[28] P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, in Proc. Sympos., Math. Res. Center, Univ. of Wisconsin-Madison vol. 33. Academic Press, New York (1974) 89-123. MR 658142 | Zbl 0341.65076

[29] A. Logg, G.N. Wells and J. Hake, DOLFIN: a C++/Python Finite Element Library, Chapt. 10. Springer (2012). MR 3075806

[30] P. Mullen, A. Mckenzie, D. Pavlov, L. Durant, Y. Tong, E. Kanso, J. Marsden and M. Desbrun, Discrete Lie advection of differential forms. Foundations of Computational Mathematics 11 (2011) 131-149. MR 2776394 | Zbl 1222.35010

[31] J.-C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315-341. MR 592160 | Zbl 0419.65069

[32] J.-C. Nédélec, A new family of mixed finite elements in R3. Numer. Math. 50 (1986) 57-81. MR 864305 | Zbl 0625.65107

[33] T.E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28 (1991) 133-140. MR 1083327 | Zbl 0729.65085

[34] W.H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, NM (1973).

[35] G.R. Richter, An optimal-order error estimate for the discontinuous Galerkin method. Math. Comput. 50 (1988) 75-88. MR 917819 | Zbl 0643.65059

[36] H.-G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Convection-diffusion-reaction and flow problems, volume 24 of Springer Series in Computational Mathematics. 2nd edition. Springer-Verlag, Berlin (2008). MR 2454024 | Zbl 1155.65087

[37] G. Zhou, How accurate is the streamline diffusion finite element method? Math. Comput. 66 (1997) 31-44. MR 1370859 | Zbl 0854.65094