Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 47 (2013) no. 5, p. 1265-1286

In this work, the error behaviour of high-order exponential operator splitting methods for the time integration of nonlinear evolutionary Schrödinger equations is investigated. The theoretical analysis utilises the framework of abstract evolution equations on Banach spaces and the formal calculus of Lie derivatives. The general approach is substantiated on the basis of a convergence result for exponential operator splitting methods of (nonstiff) order p applied to the multi-configuration time-dependent Hartree-Fock (MCTDHF) equations, which are associated with a model reduction for high-dimensional linear Schrödinger equations describing free electrons that interact by Coulomb force. Provided that the analytical solution of the MCTDHF equations constituting a system of coupled linear ordinary differential equations and low-dimensional nonlinear partial differential equations satisfies suitable regularity requirements, convergence of order p - 1 in the H1 Sobolev norm and convergence of order p in the L2 norm is proven. An analogous result follows for the cubic nonlinear Schrödinger equation, which is also illustrated by a numerical experiment.

DOI : https://doi.org/10.1051/m2an/2013067
Classification:  65L05,  65M12,  65J15
Keywords: nonlinear evolution equations, time-dependent nonlinear Schrödinger equations, multi-configuration time-dependent Hartree-Fock (MCTDHF) equations, high-order exponential operator splitting methods, local error expansion, convergence
@article{M2AN_2013__47_5_1265_0,
     author = {Koch, Othmar and Neuhauser, Christof and Thalhammer, Mechthild},
     title = {Error analysis of high-order splitting methods for nonlinear evolutionary Schr\"odinger equations and application to the MCTDHF equations in electron dynamics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {5},
     year = {2013},
     pages = {1265-1286},
     doi = {10.1051/m2an/2013067},
     mrnumber = {3100763},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2013__47_5_1265_0}
}
Koch, Othmar; Neuhauser, Christof; Thalhammer, Mechthild. Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 47 (2013) no. 5, pp. 1265-1286. doi : 10.1051/m2an/2013067. http://www.numdam.org/item/M2AN_2013__47_5_1265_0/

[1] J. Abhau and M. Thalhammer, A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations. J. Comput. Phys. 231 (2012) 6665-6681. | MR 2965095

[2] R.A. Adams, Sobolev Spaces. Academic Press, Orlando, Fla. (1975). | MR 450957 | Zbl 1098.46001

[3] W. Bao, D. Jaksch and P. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J. Comput. Phys. 187 (2003) 318-342. | MR 1977789 | Zbl 1028.82501

[4] W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates. SIAM J. Sci. Comput. 26 (2005) 2010-2028. | MR 2196586 | Zbl 1084.35083

[5] C. Bardos, I. Catto, N. Mauser and S. Trabelsi, Global-in-time existence of solutions to the multiconfiguration time-dependent Hartree-Fock equations: A sufficient condition. Appl. Math. Lett. 22 (2009) 147-152. | MR 2482267 | Zbl 1163.35464

[6] C. Bardos, I. Catto, N. Mauser and S. Trabelsi, Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations. Arch. Ration. Mech. Anal. 198 (2010) 273-330. | MR 2679373 | Zbl 1229.35221

[7] M.H. Beck, A. Jäckle, G.A. Worth, and H.-D. Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets. Phys. Rep. 324 (2000) 1-105.

[8] M.H. Beck and H.-D. Meyer, An efficient and robust integration scheme for the equations of the multiconfiguration time-dependent Hartree (MCTDH) method. Z. Phys. D 42 (1997) 113-129.

[9] S. Blanes and P.C. Moan, Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 142 (2002) 313-330. | MR 1906732 | Zbl 1001.65078

[10] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer Verlag, New York, 2nd edition (2002). | MR 1894376 | Zbl 0804.65101

[11] I. Burghardt, H.-D. Meyer and L.S. Cederbaum, Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method. J. Chem. Phys. 111 (1999) 2927-2939.

[12] J. Caillat, J. Zanghellini, M. Kitzler, W. Kreuzer, O. Koch and A. Scrinzi, Correlated multielectron systems in strong laser pulses - an MCTDHF approach. Phys. Rev. A 71 (2005) 012712.

[13] M. Caliari, Ch. Neuhauser and M. Thalhammer, High-order time-splitting Hermite and Fourier spectral methods for the Gross-Pitaevskii equation. J. Comput. Phys. 228 (2009) 822-832. | MR 2477790 | Zbl 1158.65340

[14] S. Descombes and M. Thalhammer, An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime. BIT Numer. Math. 50 (2010) 729-749. | MR 2739463 | Zbl 1205.65250

[15] P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Proc. Cambridge Philos. Soc. 26 (1930) 376-385. | JFM 56.0751.04

[16] J. Frenkel, Wave Mechanics, Advanced General Theory. Clarendon Press, Oxford (1934). | Zbl 0013.08702

[17] L. Gauckler, Convergence of a split-step Hermite method for the Gross-Pitaevskii equation. IMA J. Numer. Anal. 49 (2011) 1194-1209. | MR 2813177 | Zbl 1223.65079

[18] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Springer Verlag, Berlin-Heidelberg-New York (2002). | MR 1904823 | Zbl 0994.65135

[19] E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Springer Verlag, Berlin-Heidelberg-New York (1987). | MR 868663 | Zbl 0638.65058

[20] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities. Cambridge Univ. Press, Cambridge (1934). | Zbl 0634.26008

[21] T. Kato, Perturbation Theory for Linear Operators. Springer Verlag, Berlin-Heidelberg-New York (1966). | MR 203473 | Zbl 0435.47001

[22] T. Kato and H. Kono, time-dependent multiconfiguration theory for electronic dynamics of molecules in an intense laser field. Chem. Phys. Lett. 392 (2004) 533-540.

[23] M. Kitzler, J. Zanghellini, Ch. Jungreuthmayer, M. Smits, A. Scrinzi and T. Brabec, Ionization dynamics of extended multielectron systems. Phys. Rev. A 70 (2004) 041401(R).

[24] O. Koch, The variational splitting method for the multi-configuration time-dependent Hartree-Fock equations for atoms. To appear in J. Numer. Anal. Indust. Appl. Math. 7 (2012) 1-13. | MR 2950041

[25] O. Koch, W. Kreuzer and A. Scrinzi, MCTDHF in ultrafast laser dynamics. AURORA TR-2003-29, Inst. Appl. Math. Numer. Anal., Vienna Univ. of Technology, Austria (2003). Available at http://www.othmar-koch.org/research.html.

[26] O. Koch, W. Kreuzer and A. Scrinzi, Approximation of the time-dependent electronic Schrödinger equation by MCTDHF. Appl. Math. Comput. 173 (2006) 960-976. | MR 2207989 | Zbl 1088.65092

[27] O. Koch and C. Lubich, Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics. M2AN Math. Model. Numer. Anal. 41 (2007) 315-331. | Numdam | MR 2339631 | Zbl 1135.81380

[28] O. Koch and C. Lubich, Analysis and time integration of the multi-configuration time-dependent Hartree-Fock equations in electron dynamics. ASC Report 4/2008, Inst. Anal. Sci. Comput. Vienna Univ. of Technology (2008). | Zbl 1218.81040

[29] O. Koch and C. Lubich, Variational splitting time integration of the MCTDHF equations in electron dynamics. IMA J. Numer. Anal. 31 (2011) 379-395. | MR 2813176 | Zbl 1218.81040

[30] Y. Kwon, D.M. Ceperley and R.M. Martin, Effects of backflow correlation in the three-dimensional electron gas: Quantum Monte Carlo study. Phys. Rev. B 58 (1998) 6800-6806.

[31] L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, Oxford-New York, 3rd edition (1977). | Zbl 0178.57901

[32] C. Lubich, A variational splitting integrator for quantum molecular dynamics. Appl. Numer. Math. 48 (2004) 355-368. | MR 2056923 | Zbl 1037.81634

[33] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. Zurich Lect. Adv. Math. Europ. Math. Soc., Zurich (2008). | MR 2474331 | Zbl 1160.81001

[34] C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77 (2008) 2141-2153. | MR 2429878 | Zbl 1198.65186

[35] R. Mclachlan and R. Quispel, Splitting methods. Acta Numer. 11 (2002) 341-434. | MR 2009376 | Zbl 1105.65341

[36] H.-D. Meyer, F. Gatti and G.A. Worth, editors. Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Wiley-VCH, Weinheim, Berlin (2009).

[37] H.-D. Meyer, U. Manthe and L.S. Cederbaum, The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165 (1990) 73-78.

[38] H.-D. Meyer and G.A. Worth, Quantum molecular dynamics: Propagating wavepackets and density operators using the multi-configuration time-dependent Hartree (MCTDH) method. Theo. Chem. Acc. 109 (2003) 251-267.

[39] M. Miklavčič, Applied Functional Analysis and Partial Differential Equations. World Scientific, Singapore (1998). | Zbl 0913.35002

[40] I. Nagy, R. Diez Muiño, J.I. Juaristi and P.M. Echenique, Spin-resolved pair-distribution functions in an electron gas: A scattering approach based on consistent potentials. Phys. Rev. B 69 (2004) 233105.

[41] M. Nest and T. Klamroth, Correlated many-electron dynamics: Application to inelastic electron scattering at a metal film. Phys. Rev. A 72 (2005) 012710.

[42] M. Nest, T. Klamroth and P. Saalfrank, The multiconfiguration time-dependent Hartree-Fock method for quantum chemical calculations. J. Chem. Phys. 122 (2005) 124102.

[43] C. Neuhauser and M. Thalhammer, On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential. BIT Numer. Math. 49 (2009) 199-215. | MR 2486135 | Zbl 1162.65385

[44] V.M. Perez-Garcia and X. Liu, Numerical methods for the simulation of trapped nonlinear Schrödinger systems. Appl. Math. Comput. 144 (2003) 215-235. | MR 1993427 | Zbl 1024.65084

[45] J.C. Slater, Quantum Theory of Molecules and Solids. McGraw-Hill, New York, Toronto, London 1 (1960). | Zbl 0045.28405

[46] G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 506-517. | MR 235754 | Zbl 0184.38503

[47] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation. Appl. Math. Sci. Springer Verlag, New York (1999). | Zbl 0928.35157

[48] M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 46 (2008) 2022-2038. | MR 2399406 | Zbl 1170.65061

[49] M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50 (2012) 3231-3258. | MR 3022261 | Zbl 1267.65116

[50] S. Trabelsi, Solutions of the multiconfiguration time-dependent Hartree-Fock equations with Coulomb interactions. C. R. Acad. Sci. Paris, Ser. I 345 (2007) 145-150. | MR 2344813 | Zbl 1120.35077

[51] H.F. Trotter, On the product of semi-groups of operators. Proc. Amer. Math. Soc. 10 (1959) 545-551. | MR 108732 | Zbl 0099.10401

[52] J. Zanghellini, M. Kitzler, T. Brabec and A. Scrinzi, Testing the multi-configuration time-dependent Hartree-Fock method. J. Phys. B: At. Mol. Phys. 37 (2004) 763-773.

[53] J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec and A. Scrinzi, An MCTDHF approach to multi-electron dynamics in laser fields. Laser Phy. 13 (2003) 1064-1068.