Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 47 (2013) no. 4, p. 1077-1106

We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers-McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.

DOI : https://doi.org/10.1051/m2an/2012058
Classification:  35G31,  35Q92,  49J20,  49K20,  92C30
Keywords: PDE constrained optimization, bidomain equations, two-variable ionic models, weak local minimizer, existence theorem, necessary optimality conditions, pointwise minimum condition
@article{M2AN_2013__47_4_1077_0,
     author = {Kunisch, Karl and Wagner, Marcus},
     title = {Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {4},
     year = {2013},
     pages = {1077-1106},
     doi = {10.1051/m2an/2012058},
     zbl = {1275.49005},
     mrnumber = {3082290},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2013__47_4_1077_0}
}
Kunisch, Karl; Wagner, Marcus. Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 47 (2013) no. 4, pp. 1077-1106. doi : 10.1051/m2an/2012058. http://www.numdam.org/item/M2AN_2013__47_4_1077_0/

[1] B. Ainseba, M. Bendahmane and R. Ruiz-Baier, Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology. J. Math. Anal. Appl. 388 (2012) 231-247. | MR 2869743 | Zbl 1234.49004

[2] R.R. Aliev and A.V. Panfilov, A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals 7 (1996) 293-301.

[3] M.S. Berger, Nonlinearity and Functional Analysis. Academic Press, New York, San Francisco, London (1977). | MR 488101 | Zbl 0368.47001

[4] Y. Bourgault, Y. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Analysis: Real World Appl. 10 (2009) 458-482. | MR 2451724 | Zbl 1154.35370

[5] A.J.V. Brandaõ, E. Fernández-Cara, P.M.D. Magalhães and M.A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh-Nagumo equation. Electron. J. Differ. Eq. (2008) 1-20. | Zbl 1173.35355

[6] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, New York (2008). | MR 2361288 | Zbl 1140.49001

[7] L.C. Evans, Partial Differential Equations. Amer. Math. Soc. Providence (1998). | MR 1625845

[8] R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445-466.

[9] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008). | MR 2441683 | Zbl 1156.49002

[10] K. Kunisch, C. Nagaiah and M. Wagner, A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology. Comput. Visualiz. Sci. 14 (2011) [2012], 257-269. | MR 2972251

[11] K. Kunisch and M. Wagner, Optimal control of the bidomain system (I): The monodomain approximation with the Rogers-McCulloch model. Nonlinear Anal.: Real World Appl. 13 (2012) 1525-1550. | MR 2890991 | Zbl 1256.49009

[12] K. Kunisch and M. Wagner, Optimal control of the bidomain system (II): Uniqueness and regularity theorems. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011-008 (to appear: Ann. Mat. Pura Appl.) | Zbl 1280.49005

[13] S. Muzdeka and E. Barbieri, Control theory inspired considerations for the mathematical model defibrillation, in Proc. of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference 7416-7421.

[14] C. Nagaiah and K. Kunisch, Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology. Appl. Num. Math. 61 (2011) 53-65. | MR 2735255 | Zbl 1201.92026

[15] C. Nagaiah, K. Kunisch and G. Plank, Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49 (2011) 149-178. | MR 2794304 | Zbl 1226.49024

[16] C. Nagaiah, K. Kunisch and G. Plank, Optimal control approach to termination of re-entry waves in cardiac electrophysiology. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011-020 (to appear: J. Math. Biol., doi: 10.1007/s00285-012-0557-2) | MR 3071161 | Zbl pre06187282

[17] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. Institute of Radio Engineers 50 (1962) 2061-2070.

[18] J.M. Rogers and A.D. Mcculloch, A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Engrg. 41 (1994) 743-757.

[19] S. Rolewicz, Funktionalanalysis und Steuerungstheorie. Springer, Berlin, Heidelberg, New York (1976). | MR 442779 | Zbl 0333.49002

[20] J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal and A. Tveito, Computing the Electrical Activity in the Heart. Springer, Berlin (2006). | MR 2258456 | Zbl 1182.92020

[21] L. Tung, A Bi-Domain Model for Describing Ischemic Myocardial D-C Potentials. Ph.D. thesis. Massachusetts Institute of Technology (1978).

[22] M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Analysis: Real World Appl. 10 (2009) 849-868. | MR 2474265 | Zbl 1167.35403

[23] J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York, London (1972). | MR 372708 | Zbl 0253.49001

[24] K. Yosida, Functional Analysis. Springer, Berlin (1995) (reprint of the 6th edn. from 1980). | MR 617913