A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 47 (2013) no. 2, p. 555-581

We consider the following problem of error estimation for the optimal control of nonlinear parabolic partial differential equations: let an arbitrary admissible control function be given. How far is it from the next locally optimal control? Under natural assumptions including a second-order sufficient optimality condition for the (unknown) locally optimal control, we estimate the distance between the two controls. To do this, we need some information on the lowest eigenvalue of the reduced Hessian. We apply this technique to a model reduced optimal control problem obtained by proper orthogonal decomposition (POD). The distance between a local solution of the reduced problem to a local solution of the original problem is estimated.

DOI : https://doi.org/10.1051/m2an/2012037
Classification:  49K20,  35J61,  35K58
Keywords: optimal control, semilinear partial differential equations, error estimation, proper orthogonal decomposition
@article{M2AN_2013__47_2_555_0,
     author = {Kammann, Eileen and Tr\"oltzsch, Fredi and Volkwein, Stefan},
     title = {A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {2},
     year = {2013},
     pages = {555-581},
     doi = {10.1051/m2an/2012037},
     zbl = {1282.49021},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2013__47_2_555_0}
}
Kammann, Eileen; Tröltzsch, Fredi; Volkwein, Stefan. A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 47 (2013) no. 2, pp. 555-581. doi : 10.1051/m2an/2012037. http://www.numdam.org/item/M2AN_2013__47_2_555_0/

[1] A.C. Antoulas, Approximation of large-scale dynamical systems, Advances in Design and Control. Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA (2005). With a foreword by Jan C. Willems. | MR 2155615 | Zbl 1158.93001

[2] N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201-229. | MR 1937089 | Zbl 1033.65044

[3] M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An ‘empirical interpolation' method : application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667-672. | MR 2103208 | Zbl 1061.65118

[4] P. Benner and E.S. Quintana-Ortí, Model reduction based on spectral projection methods, in Reduction of Large-Scale Systems, edited by P. Benner, V. Mehrmann, D.C. Sorensen, Lect. Notes Comput. Sci. Eng. 45 (2005) 5-48. | MR 2503778 | Zbl 1106.93015

[5] E. Casas, J.C. De los Reyes and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM : J. Optim. 19 (2008) 616-643. | MR 2425032 | Zbl 1161.49019

[6] E. Casas and F. Tröltzsch, First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM : J. Control Optim. 48 (2009) 688-718. | MR 2486089 | Zbl 1194.49025

[7] S. Chaturantabut and D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation. SIAM : J. Sci. Comput. 32 (2010) 2737-2764. | MR 2684735 | Zbl 1217.65169

[8] A.L. Dontchev, W.W. Hager, A.B. Poore and B. Yang, Optimality, stability, and convergence in nonlinear control. Appl. Math. Optim. 31 (1995) 297-326. | MR 1316261 | Zbl 0821.49022

[9] M.A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Acad. Sci. Paris, Ser. I 349 (2011) 873-877. | MR 2835894 | Zbl 1232.49039

[10] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer-Verlag, Berlin. Math. Model. Theory Appl. 23 (2009). | MR 2516528 | Zbl 1167.49001

[11] M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39 (2008) 319-345. | MR 2396870 | Zbl 1191.49040

[12] P. Holmes, J.L. Lumley and G. Berkooz, Turbulence, coherent structures, dynamical systems and symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1996). | MR 1422658 | Zbl 0923.76002

[13] A.D. Ioffe, Necessary and sufficient conditions for a local minimum 3 : Second order conditions and augmented duality. SIAM : J. Control Optim. 17 (1979) 266-288. | MR 525027 | Zbl 0417.49029

[14] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008). | MR 2441683 | Zbl 1156.49002

[15] M. Kahlbacher and S. Volkwein, POD aposteriori error based inexact SQP method for bilinear elliptic optimal control problems. ESAIM : M2AN 46 (2012) 491-511. | Numdam | Zbl 1272.49059

[16] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117-148. | MR 1868765 | Zbl 1005.65112

[17] O. Lass and S. Volkwein, POD Galerkin schemes for nonlinear elliptic-parabolic systems (2011). Submitted. | Zbl 1272.49060

[18] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971). | MR 271512 | Zbl 0203.09001

[19] K. Malanowski, Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal control problems. Appl. Math. Optim. 8 (1981) 69-95. | MR 646505 | Zbl 0479.49017

[20] K. Malanowski, Two-norm approach in stability and sensitivity analysis of optimization and optimal control problems. Adv. Math. Sci. Appl. 2 (1993) 397-443. | MR 1239267 | Zbl 0791.49015

[21] K. Malanowski, Ch. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems, in Mathematical Programming with Data Perturbations, edited by Marcel-Dekker, Inc. Lect. Notes Pure Appl. Math. 195 (1997) 253-284. | MR 1472274 | Zbl 0883.49025

[22] I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120 (2012) 345-386. | MR 2874969 | Zbl 1245.65074

[23] A. Rösch and D. Wachsmuth, Numerical verification of optimality conditions. SIAM J. Control Optim. 47 (2008) 2557-2581. | MR 2448474 | Zbl 1171.49018

[24] A. Rösch and D. Wachsmuth, How to check numerically the sufficient optimality conditions for infinite-dimensional optimization problems, in Optimal control of coupled systems of partial differential equations, Int. Ser. Numer. Math. 158 (2009) 297-317. | MR 2588562 | Zbl 1197.49022

[25] E.W. Sachs and M. Schu, A priori error estimates for reduced order models in finance. ESAIM : M2AN 47 (2013) 449-469. | Numdam | MR 3021694 | Zbl 1268.91182

[26] K. Schittkowski, Numerical solution of a time-optimal parabolic boundary-value control problem. JOTA 27 (1979) 271-290. | MR 529864 | Zbl 0372.49014

[27] A. Studinger and S. Volkwein, Numerical analysis of POD a posteriori error estimation for optimal control (2012). | Zbl 1275.49050

[28] T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and POD a posteriori error estimators for an elliptic linear quadratic optimal control problem. Mathematical and Computer Modelling of Dynamical Systems, Math. Comput. Modell. Dyn. Syst. 17 (2011) 355-369. | MR 2823468 | Zbl pre06287792

[29] F. Tröltzsch, Optimal Control of Partial Differential Equations. American Math. Society, Providence, Theor. Methods Appl. 112 (2010). | Zbl 1195.49001

[30] F. Tröltzsch and S. Volkwein, POD a posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44 (2009) 83-115. | MR 2556846 | Zbl 1189.49050

[31] S. Volkwein, Optimal control of a phase-field model using proper orthogonal decomposition. ZAMM Z. Angew. Math. Mech. 81 (2001) 83-97. | MR 1818724 | Zbl 1007.49019

[32] S. Volkwein, Model Reduction using Proper Orthogonal Decomposition. Lecture notes, Institute of Mathematics and Statistics, University of Konstanz (2011).