Air entrainment in transient flows in closed water pipes : A two-layer approach
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) no. 2, p. 507-538
In this paper, we first construct a model for free surface flows that takes into account the air entrainment by a system of four partial differential equations. We derive it by taking averaged values of gas and fluid velocities on the cross surface flow in the Euler equations (incompressible for the fluid and compressible for the gas). The obtained system is conditionally hyperbolic. Then, we propose a mathematical kinetic interpretation of this system to finally construct a two-layer kinetic scheme in which a special treatment for the “missing” boundary condition is performed. Several numerical tests on closed water pipes are performed and the impact of the loss of hyperbolicity is discussed and illustrated. Finally, we make a numerical study of the order of the kinetic method in the case where the system is mainly non hyperbolic. This provides a useful stability result when the spatial mesh size goes to zero.
DOI : https://doi.org/10.1051/m2an/2012036
Classification:  74S10,  35L60,  74G15
@article{M2AN_2013__47_2_507_0,
     author = {Bourdarias, C. and Ersoy, M. and Gerbi, St\'ephane},
     title = {Air entrainment in transient flows in closed water pipes : A two-layer approach},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {2},
     year = {2013},
     pages = {507-538},
     doi = {10.1051/m2an/2012036},
     zbl = {1267.76009},
     mrnumber = {3021696},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2013__47_2_507_0}
}
Bourdarias, C.; Ersoy, M.; Gerbi, Stéphane. Air entrainment in transient flows in closed water pipes : A two-layer approach. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) no. 2, pp. 507-538. doi : 10.1051/m2an/2012036. http://www.numdam.org/item/M2AN_2013__47_2_507_0/

[1] R. Abgrall and S. Karni, Two-layer shallow water system : a relaxation approach. SIAM J. Sci. Comput. 31 (2009) 1603-1627. | MR 2491538 | Zbl 1188.76229

[2] E. Audusse, A multilayer Saint-Venant model : derivation and numerical validation. Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 189-214. | MR 2129374 | Zbl 1075.35030

[3] R. Barros and W. Choi, On the hyperbolicity of two-layer flows, in Frontiers of applied and computational mathematics. World Sci. Publ., Hackensack, NJ (2008) 95-103. | MR 2503678 | Zbl pre05587244

[4] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, in Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004) | MR 2128209 | Zbl 1086.65091

[5] F. Bouchut and T. Morales, An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. ESAIM : M2AN 42 (2008) 683-689. | Numdam | MR 2437779 | Zbl 1203.76110

[6] C. Bourdarias and S. Gerbi, A finite volume scheme for a model coupling free surface and pressurised flows in pipes. J. Comput. Appl. Math. 209 (2007) 109-131. | MR 2384375 | Zbl 1135.76036

[7] C. Bourdarias, M. Ersoy and S. Gerbi, A kinetic scheme for pressurised flows in non uniform closed water pipes. Monografias de la Real Academia de Ciencias de Zaragoza 31 (2009) 1-20. | MR 2547524

[8] C. Bourdarias, M. Ersoy and S. Gerbi, A model for unsteady mixed flows in non uniform closed water pipes and a well-balanced finite volume scheme. International Journal on Finite Volumes 6 (2009) 1-47. | MR 2565370 | Zbl 1298.76033

[9] C. Bourdarias, M. Ersoy and S. Gerbi, A kinetic scheme for transient mixed flows in non uniform closed pipes : a global manner to upwind all the source terms. J. Sci. Comput. (2011) 1-16. | MR 2811692 | Zbl pre05936137

[10] C. Bourdarias, M. Ersoy and S. Gerbi, A mathematical model for unsteady mixed flows in closed water pipes. Science China Math. 55 (2012) 221-244. | MR 2886537 | Zbl pre06040071

[11] C. Bourdarias, M. Ersoy and S. Gerbi, Unsteady mixed flows in non uniform closed water pipes : a full kinetic approach (2011). Submitted. | Zbl 1298.76033

[12] M. Castro, J. Macías and C. Parés, A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. ESAIM : M2AN 35 (2001) 107-127. | Numdam | MR 1811983 | Zbl 1094.76046

[13] S. Cerne, S. Petelin and I. Tiselj, Coupling of the interface tracking and the two-fluid models for the simulation of incompressible two-phase flow. J. Comput. Phys. 171 (2001) 776-804. | Zbl 1065.76619

[14] M.H. Chaudhry, S.M. Bhallamudi, C.S. Martin and M. Naghash, Analysis of transient pressures in bubbly, homogeneous, gas-liquid mixtures. J. Fluids Eng. 112 (1990) 225-231.

[15] C.M. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws. Arch. Ration. Mech. Anal. 107 (1989) 127-155. | MR 996908 | Zbl 0714.35046

[16] G. Dal Maso, P.G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483-548. | MR 1365258 | Zbl 0853.35068

[17] M. Ersoy, Modélisation, analyse mathématique et numérique de divers écoulements compressibles ou incompressibles en couche mince. Ph.D. thesis, Université de Savoie, Chambéry (2010).

[18] I. Faille and E. Heintze, A rough finite volume scheme for modeling two-phase flow in a pipeline. Comput. Fluids 28 (1999) 213-241. | Zbl 0964.76050

[19] A.T. Fuller, Root location criteria for quartic equations. IEEE Trans. Autom. Control 26 (1981) 777-782. | MR 630822 | Zbl 0496.93031

[20] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89-102. | MR 1821555 | Zbl 0997.76023

[21] M.A. Hamam and A. Mccorquodale, Transient conditions in the transition from gravity to surcharged sewer flow. Can. J. Civ. Eng. 9 (1982) 189-196.

[22] T. Hibiki and M. Ishii, One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimesaa. Int. J. Heat Mass Transfer 46 (2003) 4935-4948. | Zbl 1052.76070

[23] T. Hibiki and M. Ishii, Thermo-fluid dynamics of two-phase flow. With a foreword by Lefteri H. Tsoukalas. Springer, New York (2006). | MR 2352856 | Zbl 1209.76001

[24] L.V. Ovsjannikov, Models of two-layered “shallow water”. Zh. Prikl. Mekh. i Tekhn. Fiz. 180 (1979) 3-14. | MR 542106

[25] C. Parés, Numerical methods for nonconservative hyperbolic systems : a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300-321. | MR 2217384 | Zbl 1130.65089

[26] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201-231. | MR 1890353 | Zbl 1008.65066

[27] L. Sainsaulieu, An Euler system modeling vaporizing sprays, in Dynamics of Hetergeneous Combustion and Reacting Systems, Progress in Astronautics and Aeronautics, AIAA, Washington, DC 152 (1993).

[28] L. Sainsaulieu, Finite volume approximate of two-phase fluid flows based on an approximate Roe-type Riemann solver. J. Comput. Phys. 121 (1995) 1-28. | MR 1352338 | Zbl 0834.76070

[29] S.B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199 (1989) 177-215. | MR 985199 | Zbl 0659.76044

[30] C. Savary, Transcritical transient flow over mobile beds, boundary conditions treatment in a two-layer shallow water model. Ph.D. thesis, Louvain (2007).

[31] J.B. Schijf and J.C. Schönfled, Theoretical considerations on the motion of salt and fresh water, in Proc. of Minnesota International Hydraulic Convention. IAHR (1953) 322-333.

[32] C.S.S. Song, Two-phase flow hydraulic transient model for storm sewer systems, in Second international conference on pressure surges, BHRA Fluid engineering. Bedford, England (1976) 17-34.

[33] C.S.S. Song, Interfacial boundary condition in transient flows, in Proc. of Eng. Mech. Div. ASCE, on advances in civil engineering through engineering mechanics (1977) 532-534.

[34] C.S.S. Song, J.A. Cardle and K.S. Leung, Transient mixed-flow models for storm sewers. J. Hydraul. Eng. 109 (1983) 1487-1503.

[35] H.B. Stewart and B. Wendroff, Two-phase flow : models and methods. J. Comput. Phys. 56 (1984) 363-409. | MR 768670 | Zbl 0596.76103

[36] I. Tiselj and S. Petelin, Modelling of two-phase flow with second-order accurate scheme. J. Comput. Phys. 136 (1997) 503-521. | Zbl 0918.76050

[37] D.C. Wiggert and M.J. Sundquist, The effects of gaseous cavitation on fluid transients. J. Fluids Eng. 101 (1979) 79-86.

[38] E.B. Wylie and V.L. Streeter, Fluid transients in systems. Prentice Hall, Englewood Cliffs, NJ (1993).