Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) no. 2, p. 317-348
We present a reduced basis offline/online procedure for viscous Burgers initial boundary value problem, enabling efficient approximate computation of the solutions of this equation for parametrized viscosity and initial and boundary value data. This procedure comes with a fast-evaluated rigorous error bound certifying the approximation procedure. Our numerical experiments show significant computational savings, as well as efficiency of the error bound.
DOI : https://doi.org/10.1051/m2an/2012029
Classification:  35K20,  35K55,  65M15,  65M60
@article{M2AN_2013__47_2_317_0,
     author = {Janon, Alexandre and Nodet, Ma\"elle and Prieur, Cl\'ementine},
     title = {Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {2},
     year = {2013},
     pages = {317-348},
     doi = {10.1051/m2an/2012029},
     zbl = {1272.35016},
     mrnumber = {3021689},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2013__47_2_317_0}
}
Janon, Alexandre; Nodet, Maëlle; Prieur, Clémentine. Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) no. 2, pp. 317-348. doi : 10.1051/m2an/2012029. http://www.numdam.org/item/M2AN_2013__47_2_317_0/

[1] ARPACK : Arnoldi Package, available on http://www.caam.rice.edu/software/ARPACK/.

[2] I. Babuska, The finite element method with penalty. Math. Comput. 27 (1973) 221-228. | MR 351118 | Zbl 0299.65057

[3] J.W. Barrett and C.M. Elliott, Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math. 49 (1986) 343-366. | MR 853660 | Zbl 0614.65116

[4] A. Buffa, Y. Maday, A.T. Patera, C. Prud'Homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. ESAIM : M2AN (2009). | Numdam | Zbl 1272.65084

[5] A. Chatterjee, An introduction to the proper orthogonal decomposition. Current Sci. 78 (2000) 808-817.

[6] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Comput. Math. 5 (1986). | MR 851383 | Zbl 0585.65077

[7] GLPK : GNU Linear Programming Kit, available on http://www.gnu.org/software/glpk/.

[8] GOMP : An OpenMP implementation for GCC, available on http://gcc.gnu.org/projects/gomp/.

[9] M.A. Grepl, Reduced-Basis Approximation and A Posteriori Error Estimation for Parabolic Partial Differential Equations. Ph.D. thesis, Massachusetts Institute of Technology (2005).

[10] M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM : M2AN 39 (2005) 157-181. | Numdam | MR 2136204 | Zbl 1079.65096

[11] M.A. Grepl, Y. Maday, N.C. Nguyen and A.T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM : M2AN 41 (2007) 575-605. | Numdam | MR 2355712 | Zbl 1142.65078

[12] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM : M2AN 42 (2008) 277-302. | Numdam | MR 2405149 | Zbl pre05262088

[13] J.C. Helton, J.D. Johnson, C.J. Sallaberry and C.B. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Engineering and System Safety 91 (2006) 1175-1209.

[14] E. Hopf, The partial differential equation ut + uux = μxx.Commun. Pure Appl. Math. 3 (1950) 201-230. | MR 47234 | Zbl 0039.10403

[15] D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. 345 (2007) 473-478. | MR 2367928 | Zbl 1127.65086

[16] N. Jung, B. Haasdonk and D. Kroner, Reduced Basis Method for quadratically nonlinear transport equations. Int. J. Comput. Sci. Math. 2 (2009) 334-353. | MR 2606093 | Zbl 1189.65225

[17] D.J. Knezevic and A.T. Patera, A certified reduced basis method for the Fokker-Planck equation of dilute polymeric fluids : FENE dumbbells in extensional flow. SIAM J. Sci. Comput. 32 (2010) 793-817. | MR 2609340 | Zbl 1226.82051

[18] N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations. Handbook Mater. Mod. (2005) 1523-1558.

[19] N.C. Nguyen, G. Rozza and A.T. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers's equation. Calcolo 46 (2009) 157-185. | MR 2533748 | Zbl 1178.65109

[20] J. Nocedal and S.J. Wright, Numerical optimization. Springer-Verlag (1999). | MR 1713114 | Zbl 1104.65059

[21] A.M. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Springer (2008). | Zbl 1151.65339

[22] D.V. Rovas, L. Machiels and Y. Maday, Reduced-basis output bound methods for parabolic problems. IMA J. Numer. Anal. 26 (2006) 423. | MR 2241309 | Zbl 1101.65099

[23] A. Saltelli, K. Chan and E.M. Scott, Sensitivity analysis. Wiley, New York (2000). | MR 1886391 | Zbl 1152.62071

[24] J.C. Strikwerda, Finite difference schemes and partial differential equations. Society for Industrial Mathematics (2004). | MR 2124284 | Zbl 1071.65118

[25] K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations : Rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47 (2005) 773-788. | MR 2123791 | Zbl 1134.76326

[26] K. Veroy, C. Prud'Homme and A.T. Patera, Reduced-basis approximation of the viscous Burgers equation : rigorous a posteriori error bounds. C. R. Math. 337 (2003) 619-624. | MR 2017737 | Zbl 1036.65075