Representation formulas for ${L}^{\infty }$ norms of weakly convergent sequences of gradient fields in homogenization
ESAIM: Mathematical Modelling and Numerical Analysis , Volume 46 (2012) no. 5, pp. 1121-1146.

We examine the composition of the L norm with weakly convergent sequences of gradient fields associated with the homogenization of second order divergence form partial differential equations with measurable coefficients. Here the sequences of coefficients are chosen to model heterogeneous media and are piecewise constant and highly oscillatory. We identify local representation formulas that in the fine phase limit provide upper bounds on the limit superior of the L norms of gradient fields. The local representation formulas are expressed in terms of the weak limit of the gradient fields and local corrector problems. The upper bounds may diverge according to the presence of rough interfaces. We also consider the fine phase limits for layered microstructures and for sufficiently smooth periodic microstructures. For these cases we are able to provide explicit local formulas for the limit of the L norms of the associated sequence of gradient fields. Local representation formulas for lower bounds are obtained for fields corresponding to continuously graded periodic microstructures as well as for general sequences of oscillatory coefficients. The representation formulas are applied to problems of optimal material design.

DOI: 10.1051/m2an/2011049
Classification: 35J15, 49N60
Keywords: L∞norms, nonlinear composition, weak limits, material design, homogenization
@article{M2AN_2012__46_5_1121_0,
author = {Lipton, Robert and Mengesha, Tadele},
title = {Representation formulas for $L^\infty$ norms of weakly convergent sequences of gradient fields in homogenization},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1121--1146},
publisher = {EDP-Sciences},
volume = {46},
number = {5},
year = {2012},
doi = {10.1051/m2an/2011049},
zbl = {1273.35038},
language = {en},
url = {http://www.numdam.org/articles/10.1051/m2an/2011049/}
}
TY  - JOUR
AU  - Lipton, Robert
TI  - Representation formulas for $L^\infty$ norms of weakly convergent sequences of gradient fields in homogenization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis
PY  - 2012
SP  - 1121
EP  - 1146
VL  - 46
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2011049/
DO  - 10.1051/m2an/2011049
LA  - en
ID  - M2AN_2012__46_5_1121_0
ER  - 
%0 Journal Article
%A Lipton, Robert
%T Representation formulas for $L^\infty$ norms of weakly convergent sequences of gradient fields in homogenization
%J ESAIM: Mathematical Modelling and Numerical Analysis
%D 2012
%P 1121-1146
%V 46
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2011049/
%R 10.1051/m2an/2011049
%G en
%F M2AN_2012__46_5_1121_0
Lipton, Robert; Mengesha, Tadele. Representation formulas for $L^\infty$ norms of weakly convergent sequences of gradient fields in homogenization. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 46 (2012) no. 5, pp. 1121-1146. doi : 10.1051/m2an/2011049. http://www.numdam.org/articles/10.1051/m2an/2011049/

[1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, (1992) 1482-1518. | MR | Zbl

[2] M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization. Comm. Pure Appl. Math. 40 (1987) 803-847. | MR | Zbl

[3] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications 5. North-Holland, Amsterdam (1978) | MR | Zbl

[4] E. Bonnetier and M. Vogelius, An elliptic regularity result for a composite medium with “touching” fibers of circular cross-section. SIAM J. Math. Anal. 31 (2000) 651-677. | MR | Zbl

[5] B.V. Boyarsky, Generalized solutions of a system of differential equations of the first order of elliptic type with discontinuous coefficients. Mat. Sb. N. S. 43 (1957) 451-503. | MR | Zbl

[6] L.A. Caffarelli and I. Peral, On W1,p estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1998) 1-21. | MR | Zbl

[7] J. Carlos-Bellido, A. Donoso and P. Pedregal, Optimal design in conductivity under locally constrained heat flux. Arch. Rational Mech. Anal. 195 (2010) 333-351. | MR | Zbl

[8] J. Casado-Diaz, J. Couce-Calvo and J.D. Martin-Gomez, Relaxation of a control problem in the coefficients with a functional of quadratic growth in the gradient. SIAM J. Control Optim. 47 (2008) 1428-1459. | MR | Zbl

[9] M. Chipot, D. Kinderlehrer and L. Vergara-Caffarelli, Smoothness of linear laminates. Arch. Rational Mech. Anal. 96 (1985) 81-96. | MR | Zbl

[10] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell' energia peroperatori ellittici del secondo ordine. Boll. UMI 8 (1973) 391-411. | MR | Zbl

[11] P. Duysinx and M.P. Bendsoe, Topology optimization of continuum structures with local stress constraints. Internat. J. Numer. Math. Engrg. 43 (1998) 1453-1478. | MR | Zbl

[12] D. Faraco, Milton's conjecture on the regularity of solutions to isotropic equations. Ann. Inst. Henri Poincare, Nonlinear Analysis 20 (2003) 889-909. | Numdam | MR | Zbl

[13] D. Fujii, B.C. Chen and N. Kikuchi, Composite material design of two-dimensional structures using the homogenization design method. Internat. J. Numer. Methods Engrg. 50 (2001) 2031-2051. | MR | Zbl

[14] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin, New York (2001). | MR | Zbl

[15] J.H. Gosse and S. Christensen, Strain invariant failure criteria for polymers in composite materials. AIAA (2001) 1184.

[16] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin, New York (1994). | MR | Zbl

[17] S. Jimenez and R. Lipton, Correctors and field fluctuations for the pϵ(x)-Laplacian with rough exponents. J. Math. Anal. Appl. 372 (2010) 448-469. | MR | Zbl

[18] A. Kelly and N.H. Macmillan, Strong Solids. Monographs on the Physics and Chemistry of Materials. Clarendon Press, Oxford, (1986). | Zbl

[19] F. Leonetti and V. Nesi, Quasiconformal solutions to certain first order systems and the proof of a conjecture of G.W. Milton. J. Math. Pures. Appl. 76 (1997) 109-124. | MR | Zbl

[20] Y.Y. Li and L. Nirenberg, Estimates for elliptic systems from composite material. Comm. Pure Appl. Math. LVI (2003) 892-925. | MR | Zbl

[21] Y.Y. Li and M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Rational Mech. Anal. 153 (2000) 91-151. | MR | Zbl

[22] R. Lipton, Assessment of the local stress state through macroscopic variables. Phil. Trans. R. Soc. Lond. Ser. A 361 (2003) 921-946. | MR | Zbl

[23] R. Lipton, Bounds on the distribution of extreme values for the stress in composite materials. J. Mech. Phys. Solids 52 (2004) 1053-1069. | MR | Zbl

[24] R. Lipton, Homogenization and design of functionally graded composites for stiffness and strength, in Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, edited by P.P. Castaneda et al., Kluwer Academic Publishers, Netherlands (2004) 169-192. | MR

[25] R. Lipton, Homogenization and field concentrations in heterogeneous media. SIAM J. Math. Anal. 38 (2006) 1048-1059. | MR | Zbl

[26] R. Lipton and M. Stuebner, Inverse homogenization and design of microstructure for point wise stress control. Quart. J. Mech. Appl. Math. 59 (2006) 139-161. | MR | Zbl

[27] R. Lipton and M. Stuebner, Optimal design of composite structures for strength and stiffness : an inverse homogenization approach. Struct. Multidisc. Optim. 33 (2007) 351-362. | MR | Zbl

[28] R. Lipton and M. Stuebner, A new method for design of composite structures for strength and stiffness, 12th AIAA/ISSMO Multidisciplinary Analysis & Optimization Conference. American Institute of Aeronautics and Astronautics Paper AIAA, Victoria British Columbia, Canada (2008) 5986.

[29] A.J. Markworth, K.S. Ramesh and W.P. Parks, Modelling studies applied to functionally graded materials. J. Mater. Sci. 30 (1995) 2183-2193.

[30] N. Meyers, An Lp-Estimate for the gradient of solutions of second order elliptic divergence equations. Annali della Scuola Norm. Sup. Pisa 17 (1963) 189-206. | Numdam | MR | Zbl

[31] G.W. Milton, Modeling the properties of composites by laminates, edited by J. Erickson, D. Kinderleher, R.V. Kohn and J.L. Lions. Homogenization and Effective Moduli of Materials and Media, IMA Volumes in Mathematics and Its Applications 1 (1986) 150-174. | MR | Zbl

[32] F. Murat and L. Tartar, Calcul des Variations et Homogénéisation, Les Méthodes de l'Homogénéisation : Théorie et Applications en Physique, edited by D. Bergman et al. Collection de la Direction des Études et Recherches d'Electricité de France 57 (1985) 319-369. | MR

[33] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | MR | Zbl

[34] R.J. Nuismer and J.M. Whitney, Uniaxial failure of composite laminates containing stress concentrations, in Fracture Mechanics of Composites, ASTM Special Technical Publication, American Society for Testing and Materials 593 (1975) 117-142.

[35] Y. Ootao, Y. Tanigawa and O. Ishimaru, Optimization of material composition of functionally graded plate for thermal stress relaxation using a genetic algorithim. J. Therm. Stress. 23 (2000) 257-271.

[36] G. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random fields, Rigorous results in statistical mechanics and quantum field theory, Esztergom 1979. Colloq. Math. Soc. Janos Bolyai 27 (1981) 835-873. | MR | Zbl

[37] E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory. Springer, Heidelberg (1980). | Zbl

[38] S. Spagnolo, Convergence in Energy for Elliptic Operators, Proceedings of the Third Symposium on Numerical Solutions of Partial Differential Equations, edited by B. Hubbard. College Park (1975); Academic Press, New York (1976) 469-498. | MR | Zbl

Cited by Sources: