Numerical approximation of the inviscid 3D primitive equations in a limited domain
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 46 (2012) no. 3, p. 619-646

A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.

DOI : https://doi.org/10.1051/m2an/2011058
Classification:  35L50,  65M06,  76B99,  86A05
Keywords: nonviscous primitive equations, limited domains, boundary conditions, transparent boundary conditions, finite difference methods
@article{M2AN_2012__46_3_619_0,
     author = {Chen, Qingshan and Shiue, Ming-Cheng and Temam, Roger and Tribbia, Joseph},
     title = {Numerical approximation of the inviscid 3D primitive equations in a limited domain},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {3},
     year = {2012},
     pages = {619-646},
     doi = {10.1051/m2an/2011058},
     mrnumber = {2877368},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2012__46_3_619_0}
}
Chen, Qingshan; Shiue, Ming-Cheng; Temam, Roger; Tribbia, Joseph. Numerical approximation of the inviscid 3D primitive equations in a limited domain. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 46 (2012) no. 3, pp. 619-646. doi : 10.1051/m2an/2011058. http://www.numdam.org/item/M2AN_2012__46_3_619_0/

[1] C. Cao and E.S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166 (2007) 245-267. | MR 2342696 | Zbl 1151.35074

[2] Q. Chen, J. Laminie, A. Rousseau, R. Temam and J. Tribbia, A 2.5D model for the equations of the ocean and the atmosphere. Anal. Appl. (Singap.) 5 (2007) 199-229. | MR 2340646 | Zbl 1117.35319

[3] Q. Chen, R. Temam and J.J. Tribbia, Simulations of the 2.5D inviscid primitive equations in a limited domain. J. Comput. Phys. 227 (2008) 9865-9884. | MR 2469038 | Zbl pre05372808

[4] Q. Chen, M.-C. Shiue and R. Temam, The barotropic mode for the primitive equations. J. Sci. Comput. 45 (2010) 167-199. | MR 2679795 | Zbl 1203.86009

[5] A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745-762. | MR 242392 | Zbl 0198.50103

[6] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31 (1977) 629-651. | MR 436612 | Zbl 0367.65051

[7] D. Givoli and B. Neta, High-order nonreflecting boundary conditions for the dispersive shallow water equations. J. Comput. Appl. Math. 158 (2003) 49-60; Selected papers from the Conference on Computational and Mathematical Methods for Science and Engineering, Alicante (2002). | MR 2013604 | Zbl 1107.76377

[8] J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flow. Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011-6045. | MR 2250931 | Zbl 1122.76072

[9] R.L. Higdon, Absorbing boundary conditions for difference approximations to the multidimensional wave equation. Math. Comput. 47 (1986) 437-459. | MR 856696 | Zbl 0609.35052

[10] G. Kobelkov, Existence of a solution ‘in the large' for the 3D large-scale ocean dynamics equations. C. R. Math. Acad. Sci. Paris 343 (2006) 283-286. | MR 2245395 | Zbl 1102.35003

[11] G.M. Kobelkov, Existence of a solution “in the large” for ocean dynamics equations. J. Math. Fluid Mech. 9 (2007) 588-610. | MR 2374160 | Zbl 1132.35443

[12] J.L. Lions, R. Temam and S.H. Wang, New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5 (1992) 237-288. | MR 1158375 | Zbl 0746.76019

[13] J.L. Lions, R. Temam and S.H. Wang, On the equations of the large-scale ocean. Nonlinearity 5 (1992) 1007-1053. | MR 1187737 | Zbl 0766.35039

[14] G. Marchuk, Methods and problems of computational mathematics, Actes du Congres International des Mathematiciens (Nice, 1970) 1 (1971) 151-161. | MR 519130 | Zbl 0244.65066

[15] M. Marion and R. Temam, Navier-Stokes equations : theory and approximation, Handb. Numer. Anal. VI. North-Holland, Amsterdam (1998) 503-688. | MR 1665429 | Zbl 0921.76040

[16] A. Mcdonald, Transparent boundary conditions for the shallow water equations : testing in a nested environment. Mon. Wea. Rev. 131 (2003) 698-705.

[17] I.M. Navon, B. Neta and M.Y. Hussaini, A perfectly matched layer approach to the linearized shallow water equations models. Mon. Wea. Rev. 132 (2004) 1369-1378.

[18] J. Oliger and A. Sundström, Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math. 35 (1978) 419-446. | MR 521943 | Zbl 0397.35067

[19] J. Pedlosky, Geophysical fluid dynamics, 2nd edition. Springer (1987). | Zbl 0429.76001

[20] M. Petcu, R. Temam and M. Ziane, Mathematical problems for the primitive equations with viscosity. in Handbook of Numerical Analysis. Special Issue on Some Mathematical Problems in Geophysical Fluid Dynamics, Handb. Numer. Anal., edited by R. Temam, P.G. Ciarlet EDs and J.G. Tribbia. Elsevier, New York (2008). | MR 2454281

[21] A. Rousseau, R. Temam and J. Tribbia, Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity. Discrete Contin. Dyn. Syst. 13 (2005) 1257-1276. | MR 2166669 | Zbl 1092.35089

[22] A. Rousseau, R. Temam and J. Tribbia, Numerical simulations of the inviscid primitive equations in a limited domain, in Analysis and Simulation of Fluid Dynamics, Advances in Mathematical Fluid Mechanics. Caterina Calgaro and Jean-François Coulombel and Thierry Goudon (2007). | MR 2331339 | Zbl 1291.86008

[23] A. Rousseau, R. Temam and J. Tribbia, The 3D primitive equations in the absence of viscosity : boundary conditions and well-posedness in the linearized case. J. Math. Pure Appl. 89 (2008) 297-319. | MR 2401691 | Zbl 1137.35057

[24] A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domains, in Computational Methods for the Oceans and the Atmosphere, Special Volume of the Handbook of Numerical Analysis, edited by P.G. Ciarlet, R. Temam and J. Tribbia, Guest. Elsevier, Amsterdam (2009). | MR 2454280 | Zbl 1226.86002

[25] R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas frationnaires (ii). Arch. Rational Mech. Anal. 33 (1969) 377-385. | MR 244654 | Zbl 0207.16904

[26] R. Temam and J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations. J. Atmos. Sci. 60 (2003) 2647-2660. | MR 2013931

[27] R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, in Handbook of mathematical fluid dynamics, edited by S. Friedlander and D. Serre. North-Holland (2004). | MR 2099038 | Zbl 1222.35145

[28] J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7 (1986) 870-891. | MR 848569 | Zbl 0594.76023

[29] T.T. Warner, R.A. Peterson and R.E. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc. 78 (1997) 2599-2617.

[30] W. Washington and C. Parkinson, An introduction to three-dimensional climate modelling, 2nd edition. Univ. Sci. Books, Sausalito, CA (2005). | Zbl 0655.76003

[31] N.N. Yanenko, The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer-Verlag (1971) English translation. | MR 307493 | Zbl 0209.47103