Two-sided bounds of the discretization error for finite elements
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 45 (2011) no. 5, p. 915-924

We derive an optimal lower bound of the interpolation error for linear finite elements on a bounded two-dimensional domain. Using the supercloseness between the linear interpolant of the true solution of an elliptic problem and its finite element solution on uniform partitions, we further obtain two-sided a priori bounds of the discretization error by means of the interpolation error. Two-sided bounds for bilinear finite elements are given as well. Numerical tests illustrate our theoretical analysis.

DOI : https://doi.org/10.1051/m2an/2011003
Classification:  65N30
Keywords: Lagrange finite elements, Céa's lemma, superconvergence, lower error estimates
@article{M2AN_2011__45_5_915_0,
     author = {K\v r\'\i \v zek, Michal and Roos, Hans-Goerg and Chen, Wei},
     title = {Two-sided bounds of the discretization error for finite elements},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {5},
     year = {2011},
     pages = {915-924},
     doi = {10.1051/m2an/2011003},
     zbl = {1269.65113},
     mrnumber = {2817550},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2011__45_5_915_0}
}
Křížek, Michal; Roos, Hans-Goerg; Chen, Wei. Two-sided bounds of the discretization error for finite elements. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 45 (2011) no. 5, pp. 915-924. doi : 10.1051/m2an/2011003. http://www.numdam.org/item/M2AN_2011__45_5_915_0/

[1] J. Brandts and M. Křížek, Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003) 489-505. | MR 1987941 | Zbl 1042.65081

[2] W. Chen and M. Křížek, What is the smallest possible constant in Céa's lemma? Appl. Math. 51 (2006) 128-144. | Zbl 1164.65495

[3] W. Chen and M. Křížek, Lower bounds for the interpolation error for finite elements. Mathematics in Practice and Theory 39 (2009) 159-164 (in Chinese). | MR 2599063 | Zbl 1212.41001

[4] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0511.65078

[5] S. Franz and T. Linss, Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection-diffusion problems with characteristic layers. Numer. Methods Partial Differ. Equ. 24 (2008) 144-164. | MR 2371352 | Zbl 1133.65090

[6] Ch. Grossmann, H.-G. Roos and M. Stynes, Numerical treatment of partial differential equations. Springer-Verlag, Berlin, Heidelberg (2007). | MR 2362757 | Zbl 1180.65147

[7] S. Korotov, Two-sided a posteriori error estimates for linear elliptic problems with mixed boundary conditions. Appl. Math. 52 (2007) 235-249. | MR 2316154 | Zbl 1164.65485

[8] M. Křížek and P. Neittaanmäki, Finite element approximation of variational problems and applications. Longman Scientific & Technical, Harlow (1990). | Zbl 0708.65106

[9] M. Křížek and P. Neittaanmäki, Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer, Dordrecht (1996). | MR 1431889 | Zbl 0859.65128

[10] Q. Lin and J. Lin, Finite element methods: Accuracy and improvement. Science Press, Beijing (2006).

[11] G.I. Marchuk and V.I. Agoshkov, Introduction aux méthodes des éléments finis. Mir, Moscow (1985). | Zbl 0645.65073

[12] J. Nečas and I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: An introduction. Elsevier, Amsterdam (1981). | Zbl 0448.73009

[13] L.A. Oganesjan and L.A. Ruhovec, An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary. Ž. Vyčisl. Mat. i Mat. Fyz. 9 (1969) 1102-1120. | MR 295599 | Zbl 0234.65093

[14] G. Strang and G. Fix, An analysis of the finite element method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1973). | MR 443377 | Zbl 0356.65096

[15] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. John Wiley & Sons, Chichester, Teubner, Stuttgart (1996). | Zbl 0853.65108

[16] L.B. Wahlbin, Superconvergence in Galerkin finite element methods, Lect. Notes in Math. 1605. Springer, Berlin (1995). | MR 1439050 | Zbl 0826.65092

[17] L. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimation for mildly structured grids. Math. Comp. 73 (2004) 1139-1152. | MR 2047081 | Zbl 1050.65103

[18] N.N. Yan, Superconvergence analysis and a posteriori error estimation in finite element methods. Science Press, Beijing (2008).