Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 45 (2011) no. 4, p. 779-802

This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in n (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc := n Ω ¯. The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping (NtD) given in terms of boundary integral operators. The resulting variational formulation becomes a variational inequality with a linear operator. Then we treat the corresponding numerical scheme and discuss an approximation of the NtD mapping with an appropriate discretization of the inverse Poincaré-Steklov operator. In particular, assuming some abstract approximation properties and a discrete inf-sup condition, we show unique solvability of the discrete scheme and obtain the corresponding a-priori error estimate. Next, we prove that these assumptions are satisfied with Raviart-Thomas elements and piecewise constants in Ω, and continuous piecewise linear functions on Γ. We suggest a solver based on a modified Uzawa algorithm and show convergence. Finally we present some numerical results illustrating our theory.

Classification:  65N30,  65N38,  65N22,  65F10
Keywords: Raviart-Thomas space, boundary integral operator, Lagrange multiplier
     author = {Gatica, Gabriel N. and Maischak, Matthias and Stephan, Ernst P.},
     title = {Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {4},
     year = {2011},
     pages = {779-802},
     doi = {10.1051/m2an/2010102},
     zbl = {1267.74110},
     mrnumber = {2804659},
     language = {en},
     url = {}
Gatica, Gabriel N.; Maischak, Matthias; Stephan, Ernst P. Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 45 (2011) no. 4, pp. 779-802. doi : 10.1051/m2an/2010102.

[1] I. Babuška and A.K. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method. Academic Press, New York (1972) 3-359. | MR 421106 | Zbl 0268.65052

[2] I. Babuska and G.N. Gatica, On the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differ. Equ. 19 (2003) 192-210. | MR 1958060 | Zbl 1021.65056

[3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). | MR 1115205 | Zbl 0788.73002

[4] F. Brezzi, W.W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities. Numer. Math. 28 (1977) 431-443. | MR 448949 | Zbl 0369.65030

[5] C. Carstensen, Interface problem in holonomic elastoplasticity. Math. Methods Appl. Sci. 16 (1993) 819-835. | MR 1245631 | Zbl 0792.73017

[6] C. Carstensen and J. Gwinner, FEM and BEM coupling for a nonlinear transmission problem with Signorini contact. SIAM J. Numer. Anal. 34 (1997) 1845-1864. | MR 1472200 | Zbl 0896.65079

[7] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology 4. Springer (1990). | MR 1081946 | Zbl 0755.35001

[8] G. Duvaut and J. Lions, Inequalities in Mechanics and Physics. Springer, Berlin (1976). | MR 521262 | Zbl 0331.35002

[9] I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels. Études mathématiques, Dunod, Gauthier-Villars, Paris-Bruxelles-Montreal (1974). | MR 463993 | Zbl 0281.49001

[10] R.S. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28 (1974) 963-971. | MR 391502 | Zbl 0297.65061

[11] G. Gatica and W. Wendland, Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems. Appl. Anal. 63 (1996) 39-75. | MR 1622612 | Zbl 0865.65077

[12] R. Glowinski, J.-L. Lions and R. Trémolières, Numerical Analysis of Variational Inequalities, Studies in Mathematics and its Applications 8. North-Holland Publishing Co., Amsterdam-New York (1981). | MR 635927 | Zbl 0463.65046

[13] I. Hlaváček, J. Haslinger, J. Nečas and J. Lovišek, Solution of Variational Inequalities in Mechanics, Applied Mathematical Sciences 66. Springer-Verlag (1988). | MR 952855 | Zbl 0654.73019

[14] L. Hörmander, Linear Partial Differential Operators. Springer-Verlag, Berlin (1969). | Zbl 0321.35001

[15] N. Kikuchi and J. Oden, Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988). | MR 961258 | Zbl 0685.73002

[16] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Academic Press (1980). | MR 567696 | Zbl 0457.35001

[17] J. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, Berlin (1972). | MR 350177 | Zbl 0223.35039

[18] J.E. Roberts and J.M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 523-639. | MR 1115239 | Zbl 0875.65090

[19] Z.-H. Zhong, Finite Element Procedures for Contact-Impact Problems. Oxford University Press (1993).