A non-overlapping domain decomposition method for continuous-pressure mixed finite element approximations of the Stokes problem
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 45 (2011) no. 4, p. 675-696

This study is mainly dedicated to the development and analysis of non-overlapping domain decomposition methods for solving continuous-pressure finite element formulations of the Stokes problem. These methods have the following special features. By keeping the equations and unknowns unchanged at the cross points, that is, points shared by more than two subdomains, one can interpret them as iterative solvers of the actual discrete problem directly issued from the finite element scheme. In this way, the good stability properties of continuous-pressure mixed finite element approximations of the Stokes system are preserved. Estimates ensuring that each iteration can be performed in a stable way as well as a proof of the convergence of the iterative process provide a theoretical background for the application of the related solving procedure. Finally some numerical experiments are given to demonstrate the effectiveness of the approach, and particularly to compare its efficiency with an adaptation to this framework of a standard FETI-DP method.

DOI : https://doi.org/10.1051/m2an/2010070
Classification:  76D07,  65N55,  65N30
Keywords: Stokes equations, incompressible fluids, domain decomposition methods, non-overlapping domain decomposition methods, FETI-DP methods, cross points
@article{M2AN_2011__45_4_675_0,
author = {Benhassine, Hani and Bendali, Abderrahmane},
title = {A non-overlapping domain decomposition method for continuous-pressure mixed finite element approximations of the Stokes problem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
publisher = {EDP-Sciences},
volume = {45},
number = {4},
year = {2011},
pages = {675-696},
doi = {10.1051/m2an/2010070},
zbl = {1267.76022},
mrnumber = {2804655},
language = {en},
url = {http://www.numdam.org/item/M2AN_2011__45_4_675_0}
}

Benhassine, Hani; Bendali, Abderrahmane. A non-overlapping domain decomposition method for continuous-pressure mixed finite element approximations of the Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 45 (2011) no. 4, pp. 675-696. doi : 10.1051/m2an/2010070. http://www.numdam.org/item/M2AN_2011__45_4_675_0/

[1] M. Ainsworth and S. Sherwin, Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations. Comput. Methods Appl. Mech. Eng. 175 (1999) 243-266. | MR 1702213 | Zbl 0934.76040

[2] A. Bendali and Y. Boubendir, Méthodes de décomposition de domaine et éléments finis nodaux pour la résolution de l'équation d'Helmholtz. C. R. Acad. Sci. Paris Sér. I 339 (2004) 229-234. | MR 2078080 | Zbl 1049.65141

[3] A. Bendali and Y. Boubendir, Non-overlapping domain decomposition method for a nodal finite element method. Numer. Math. 103 (2006) 515-537. | MR 2221060 | Zbl 1099.65122

[4] M. Bercovier and M. Engelman, A finite element for the numerical solution of viscous incompressible flows. J. Comput. Phys. 30 (1979) 181-201. | MR 528199 | Zbl 0395.76040

[5] Y. Boubendir, Techniques de décompositions de domaine et méthode d'équations intégrales. Ph.D. Thesis, INSA, Toulouse (2002).

[6] Y. Boubendir, An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem. J. Comput. Appl. Math. 204 (2007) 282- 291. | MR 2324457 | Zbl 1117.65151

[7] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer-Verlag, New York (2002). | MR 1894376 | Zbl 0804.65101

[8] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002

[9] C. Calgaro and J. Laminie, On the domain decomposition method for the Stokes Problem with continuous pressure. Numer. Methods Partial Differ. Equ. 16 (2000) 84-106. | MR 1727583 | Zbl 0965.76040

[10] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0511.65078

[11] T. Chacón Rebollo and E. Chacón Vera,  A non-overlapping domain decomposition method for the Stokes equations via a penalty term on the interface. C. R. Acad. Sci. Paris Sér. I 334 (2002) 221-226. | MR 1891063 | Zbl 1078.76543

[12] T. Chacón Rebollo and E. Chacón Vera, Study of a non-overlapping domain decomposition method: Poisson and Stokes problems. Appl. Numer. Math. 48 (2004) 169-194. | MR 2029329 | Zbl 1056.65131

[13] F. Collino, S. Ghanemi and P. Joly, Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Mech. Eng. 184 (2000) 171-211. | MR 1764190 | Zbl 0965.65134

[14] B. Després, Domain decomposition method and the Helmholtz problem, in Mathematical and Numerical Aspect of Wave Propagation Phenomena, SIAM, Philadelphia (1991) 44-52. | MR 1105979 | Zbl 0814.65113

[15] M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy Coupling. SIAM J. Numer. Anal. 45 (2007) 1246-1268. | MR 2318811 | Zbl 1139.76030

[16] C. Ferhat and F.X. Roux, A method of finite element tearing and interconnecting and its parallel solution alghorithm. Int. J. Numer. Methods Eng. 32 (1991) 1205-1227. | Zbl 0758.65075

[17] C. Ferhat, M. Lesoinne, P. Le Tallec, K. Pierson and D. Rixen, FETI-DP: a dual-primal unified FETI method-part I: A faster alternative to the two-level FETI method. Int. J. Numer. Meth. Engng. 50 (2001) 1523-1544. | MR 1813746 | Zbl 1008.74076

[18] V. Girault and P.A. Raviart, Finite Element Methods For Navier-Stokes Equations. Springer-Verlag, Berlin-Heidelberg (1986). | MR 851383 | Zbl 0585.65077

[19] V. Girault, B. Rivière and M.F. Wheeler, A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74 (2004) 53-84. | MR 2085402 | Zbl 1057.35029

[20] P. Gosselet and C. Rey, Non-overlapping domain decomposition methods in structural mechanics. Arch. Comput. Meth. Engng. 13 (2006) 515-572. | MR 2303317 | Zbl 1171.74041

[21] D. Rh. Gwynllyw and T.N. Phillips, On the enforcement of the zero mean pressure condition in the spectral element approximation of the Stokes Problem. Comput. Methods Appl. Mech. Eng. 195 (2006) 1027-1049. | MR 2195296 | Zbl 1176.76090

[22] H.H. Kim and C. Lee, A Neumann-Dirichlet preconditioner for a FETI-DP formulation of the two dimensional Stokes problem with mortar methods. SIAM J. Sci. Comput. 28 (2006) 1133-1152. | MR 2240807 | Zbl 1114.65141

[23] H.H. Kim, C. Lee and E.-H. Park, A FETI-DP formulation for the Stokes problem without primal pressure components. SIAM J. Numer. Anal. 47 (2010) 4142-4162. | MR 2585182 | Zbl 1275.76160

[24] A. Klawonn and L.F. Pavarino, Overlapping Schwarz methods for elasticity and Stokes problems. Comput. Methods Appl. Mech. Eng. 165 (1998) 233-245. | MR 1663528 | Zbl 0948.74077

[25] P. Le Tallec and A. Patra, Non-overlapping domain decomposition methods for adaptive hp approximations for the Stokes problem with discontinuous pressure fields. Comput. Methods Appl. Mech. Eng. 145 (1997) 361-379. | MR 1456020 | Zbl 0891.76053

[26] J. Li, A Dual-Primal FETI methods for incompressible Stokes equations. Numer. Math. 102 (2005) 257-275. | Zbl 1185.76813

[27] P.L. Lions, On the Schwarz alternating method III: A variant for non-overlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equation, SIAM, Philadelphia (1990) 202-223. | MR 1064345 | Zbl 0704.65090

[28] G. Lube, L. Müller and F.C. Otto, A nonoverlapping domain decomposition method for stabilised finite element approximations of the Oseen equations. J. Comput. Appl. Math. 132 (2001) 211-236. | MR 1840624 | Zbl 1051.76035

[29] J. Mandel and R. Tezaur, On the convergence of a dual primal substructuring method. Numer. Math. 88 (2001) 543-558. | MR 1835470 | Zbl 1003.65126

[30] L.D. Marini and A. Quarteroni, Relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55 (1989) 575-589. | MR 998911 | Zbl 0661.65111

[31] F.C. Otto and G. Lube, A nonoverlapping domain decomposition method for the Oseen equations. Math. Models Methods Appl. Sci. 8 (1998) 1091-1117. | MR 1646527 | Zbl 0939.65137

[32] F.C. Otto, G. Lube and L. Müller, An iterative substructuring method for div-stable finite element approximation of the Oseen problem. Computing 67 (2001) 91-117. | MR 1867355 | Zbl 0999.76082

[33] L.F. Pavarino and O.B. Widlund, Balancing Neumann-Neumann methods for incompressible Stokes equations. Commun. Pure Appl. Math. 55 (2002) 302-335. | MR 1866366 | Zbl 1024.76025

[34] A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations. Oxford University Press Inc., New York (1999). | MR 1857663 | Zbl 0931.65118

[35] E.M. Rønquist, Domain decomposition methods for the steady Navier-Stokes equations, in 11th International Conference on Domain Decomposition Methods (London, 1998), DDM.org, Augsburg (1999) 330-340.

[36] Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996). | Zbl 1031.65047

[37] B. Vereecke, H. Bavestrello and D. Dureisseix, An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems. Comput. Methods Appl. Mech. Eng. 192 (2003) 3409-3429. | Zbl 1054.74739