Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.
Keywords: liquid crystal, Ericksen-Leslie equations, numerical approximation
@article{M2AN_2011__45_3_523_0,
author = {Walkington, Noel J.},
title = {Numerical approximation of nematic liquid crystal flows governed by the {Ericksen-Leslie} equations},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {523--540},
year = {2011},
publisher = {EDP Sciences},
volume = {45},
number = {3},
doi = {10.1051/m2an/2010065},
mrnumber = {2804649},
zbl = {1267.76008},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2010065/}
}
TY - JOUR AU - Walkington, Noel J. TI - Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 523 EP - 540 VL - 45 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2010065/ DO - 10.1051/m2an/2010065 LA - en ID - M2AN_2011__45_3_523_0 ER -
%0 Journal Article %A Walkington, Noel J. %T Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 523-540 %V 45 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2010065/ %R 10.1051/m2an/2010065 %G en %F M2AN_2011__45_3_523_0
Walkington, Noel J. Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 3, pp. 523-540. doi: 10.1051/m2an/2010065
[1] , and , Finite element approximations of harmonic map heat flows and wave map into spheres of nonconstant radii. Numer. Math. 115 (2010) 395-432. | Zbl | MR
[2] , and , Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation. Math. Model. Numer. Anal. 40 (2006) 175-199. | Zbl | MR | Numdam
[3] , and , Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46 (2008) 1704-1731. | Zbl | MR
[4] , and , Ginzburg-Landau Vorticies. Kluwer (1995). | Zbl | MR
[5] , , , and , Minimum energy configurations for liquid crystals: Computational results, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987). | Zbl | MR
[6] , and , Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J. Numer. Anal. 39 (2001) 735-762. | Zbl | MR
[7] , and , The existence of regular boundary points for non-linear elliptic systems. J. Reine Angew. Math. 602 (2007) 17-58. | Zbl | MR
[8] , Conservation laws for liquid crystals. Trans. Soc. Rheol. 5 (1961) 22-34. | MR
[9] , Nilpotent energies in liquid crystal theory. Arch. Rational Mech. Anal. 10 (1962) 189-196. | Zbl | MR
[10] , Continuum theory of nematic liquid crystals. Res. Mechanica 21 (1987) 381-392.
[11] , On the theory of liquid crystals. Discuss. Faraday Soc. 25 (1958) 19-28.
[12] , An introduction to the mathematical theory of the Navier-Stokes equations I: Linearized steady problems, Springer Tracts in Natural Philosophy 38. Springer-Verlag, New York (1994). | Zbl | MR
[13] and , Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model. Preprint (2009). | Zbl
[14] , and , Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84 (2005) 279-330. | Zbl | MR
[15] and , Mathematical questions of liquid crystal theory, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987). | Zbl | MR
[16] and , Stability of singularities of minimizing harmonic maps. J. Differential Geom. 29 (1989) 113-123. | Zbl | MR
[17] , and , Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105 (1986) 547-570. | Zbl | MR
[18] , and , A saddle point approach to the computation of harmonic maps. SIAM J. Numer. Anal. 47 (2009) 1500-1523. | Zbl | MR
[19] and , Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142 (1998) 99-125. | Zbl | MR
[20] , Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28 (1968) 265-283. | Zbl | MR
[21] , Theory of flow phenomenum in liquid crystals, in The Theory of Liquid Crystals 4, W. Brown Ed., Academic Press, New York (1979) 1-81.
[22] , Mathematics theory of liquid crystals, in Applied Mathematics At The Turn Of Century: Lecture notes of the 1993 summer school, Universidat Complutense de Madrid (1995).
[23] , Solutions of Ginzburg-Landau equations and critical points of renormalized energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 599-622. | Zbl | MR | Numdam
[24] , Some dynamic properties of Ginzburg-Landau vorticies. Comm. Pure Appl. Math. 49 (1996) 323-359. | Zbl | MR
[25] and , Nonparabolic dissipative systems, modeling the flow of liquid crystals. Comm. Pure Appl. Math. XLVIII (1995) 501-537. | Zbl | MR
[26] and , Existence of solutions for the Ericksen-Leslie system. Arch. Rational Mech. Anal. 154 (2000) 135-156. | Zbl | MR
[27] , and , An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227 (2007) 1411-1427. | Zbl | MR
[28] and , Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37 (2000) 725-741. | Zbl | MR
[29] and , Mixed Methods for the Approximation of Liquid Crystal Flows. ESAIM: M2AN 36 (2002) 205-222. | Zbl | MR | Numdam
[30] , Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006) 355-426. | Zbl | MR
[31] , The theory of liquid crystals. Trans. Faraday Soc. 29 (1933) 883-889. | Zbl
[32] , The Static and Dynamic Continuum Theory of Liquid Crystals: a Mathematical Introduction. Taylor & Francis Inc., New York (2004).
[33] , Variational theories for liquid crystals, Appl. Math. Math. Comput. 8. Chapman & Hall, London (1994). | Zbl | MR
[34] , Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010) 4680-4710. | Zbl | MR
Cité par Sources :






