A discrete contact model for crowd motion
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 45 (2011) no. 1, p. 145-168

The aim of this paper is to develop a crowd motion model designed to handle highly packed situations. The model we propose rests on two principles: we first define a spontaneous velocity which corresponds to the velocity each individual would like to have in the absence of other people. The actual velocity is then computed as the projection of the spontaneous velocity onto the set of admissible velocities (i.e. velocities which do not violate the non-overlapping constraint). We describe here the underlying mathematical framework, and we explain how recent results by J.F. Edmond and L. Thibault on the sweeping process by uniformly prox-regular sets can be adapted to handle this situation in terms of well-posedness. We propose a numerical scheme for this contact dynamics model, based on a prediction-correction algorithm. Numerical illustrations are finally presented and discussed.

DOI : https://doi.org/10.1051/m2an/2010035
Classification:  34A60,  47H04,  70F35,  90C46
Keywords: crowd motion model, contact dynamics, convex analysis, differential inclusion, prox-regularity
@article{M2AN_2011__45_1_145_0,
     author = {Maury, Bertrand and Venel, Juliette},
     title = {A discrete contact model for crowd motion},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {1},
     year = {2011},
     pages = {145-168},
     doi = {10.1051/m2an/2010035},
     zbl = {1271.34020},
     mrnumber = {2781134},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2011__45_1_145_0}
}
Maury, Bertrand; Venel, Juliette. A discrete contact model for crowd motion. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 45 (2011) no. 1, pp. 145-168. doi : 10.1051/m2an/2010035. http://www.numdam.org/item/M2AN_2011__45_1_145_0/

[1] N. Bellomo and C. Dogbe, On the modelling crowd dynamics from scalling to hyperbolic macroscopic models. Math. Mod. Meth. Appl. Sci. 18 (2008) 1317-1345. | MR 2438218 | Zbl 1198.92036

[2] F. Bernicot and J. Venel, Existence of sweeping process in Banach spaces under directional prox-regularity. J. Convex Anal. 17 (2010) 451-484. | MR 2675657 | Zbl 1204.34083

[3] V. Blue and J.L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. B 35 (2001) 293-312.

[4] A. Borgers and H. Timmermans, City centre entry points, store location patterns and pedestrian route choice behaviour: A microlevel simulation model. Socio-Econ. Plann. Sci. 20 (1986) 25-31.

[5] A. Borgers and H. Timmermans, A model of pedestrian route choice and demand for retail facilities within inner-cityshopping areas. Geogr. Anal. 18 (1986) 115-128.

[6] M. Bounkhel and L. Thibault, On various notions of regularity of sets in nonsmooth analysis. Nonlinear Convex Anal. 48 (2002) 223-246. | MR 1870754 | Zbl 1012.49013

[7] H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. AM, North Holland (1973). | MR 348562 | Zbl 0252.47055

[8] C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295 (2001) 507-525. | Zbl 0978.90018

[9] G. Buttazzo, C. Jimenez and E. Oudet, An optimization problem for mass transportation with congested dynamics. SIAM J. Control Optim. 48 (2009) 1961-1976. | MR 2516195 | Zbl 1282.49035

[10] P.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation. Masson, Paris (1990). | Zbl 0488.65001

[11] F.H. Clarke, R.J. Stern and P.R. Wolenski, Proximal smoothness and the lower-c2 property. J. Convex Anal. 2 (1995) 117-144. | MR 1363364 | Zbl 0881.49008

[12] F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, Inc. (1998). | MR 1488695 | Zbl 1047.49500

[13] W. Daamen, Modelling passenger flows in public transport facilities. Ph.D. Thesis, Technische Universiteit Delft, The Netherlands (2004).

[14] J.A. Delgado, Blaschke's theorem for convex hypersurfaces. J. Diff. Geom. 14 (1979) 489-496. | MR 600609 | Zbl 0482.53044

[15] C. Dogbé, On the numerical solutions of second order macroscopic models of pedestrian flows. Comput. Math. Appl. 56 (2008) 1884-1898. | MR 2445334 | Zbl 1152.65461

[16] J.F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process. Math. Program., Ser. B 104 (2005) 347-373. | MR 2179241 | Zbl 1124.49010

[17] J.F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation. J. Diff. Equ. 226 (2006) 135-179. | MR 2232433 | Zbl 1110.34038

[18] J.J. Fruin, Design for pedestrians: A level-of-service concept. Highway Research Record 355 (1971) 1-15.

[19] S. Gwynne, E.R. Galea, P.J. Lawrence and L. Filippidis, Modelling occupant interaction with fire conditions using the buildingEXODUS evacuation model. Fire Saf. J. 36 (2001) 327-357.

[20] D. Helbing, A fluid-dynamic model for the movement of pedestrians. Complex Syst. 6 (1992) 391-415. | MR 1211939 | Zbl 0776.92016

[21] D. Helbing and P. Molnár, Social force model for pedestrians dynamics. Phys. Rev. E 51 (1995) 4282-4286.

[22] D. Helbing, I.J. Farkas and T. Vicsek, Simulating dynamical features of escape panic. Nature 407 (2000) 487.

[23] L.F. Henderson, The stastitics of crowd fluids. Nature 229 (1971) 381-383.

[24] S.P. Hoogendoorn and P.H.L. Bovy, Gas-kinetic modeling and simulation of pedestrian flows. Transp. Res. Rec. 1710 (2000) 28-36.

[25] S.P. Hoogendoorn and P.H.L. Bovy, Pedestrian route-choice and activity scheduling theory and models. Transp. Res. B 38 (2004) 169-190.

[26] S.P. Hoogendoorn and P.H.L. Bovy, Dynamic user-optimal assignment in continuous time and space. Transp. Res. B 38 (2004) 571-592.

[27] R. Hughes, The flow of large crowds of pedestrians. Math. Comput. Simul. 53 (2000) 367-370.

[28] R. Hughes, A continuum theory for the flow of pedestrians. Transp. Res. B 36 (2002) 507-535.

[29] R. Kimmel and J. Sethian, Fast marching methods for computing distance maps and shortest paths. Technical Report 669, CPAM, Univ. of California, Berkeley (1996). | Zbl 0926.65106

[30] A. Kirchner and A. Schadschneider, Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrians dynamics. Physica A 312 (2002) 260-276. | Zbl 0997.90017

[31] H. Klüpfel and T. Meyer-König, Characteristics of the pedgo software for crowd movement and egress simulation, in Pedestrian and Evacuation Dynamics 2003, E. Galea Ed., University of Greenwich, CMS Press, London (2003) 331-340.

[32] A. Lefebvre, Modélisation numérique d'écoulements fluide/particules, Prise en compte des forces de lubrification. Ph.D. Thesis, Université Paris-Sud XI, Faculté des sciences d'Orsay, France (2007).

[33] A. Lefebvre, Numerical simulations of gluey particles. ESAIM: M2AN 43 (2009) 53-80. | Numdam | MR 2494794 | Zbl 1163.76056

[34] G.G. Løvås, Modelling and simulation of pedestrian traffic flow. Transp. Res. B 28 (1994) 429-443.

[35] B. Maury and J. Venel, Un modèle de mouvement de foule. ESAIM: Proc. 18 (2007) 143-152. | MR 2404902 | Zbl pre05213262

[36] B. Maury and J. Venel, Handling of contacts on crowd motion simulations, in Trafic and Granular Flow '07, Springer (2009) 171-180. | Zbl 1161.90349

[37] B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type. Math. Mod. Meth. Appl. Sci. (to appear). Available at http://cvgmt.sns.it/papers/maurousan09/. | Zbl 1223.35116

[38] J.J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci., Ser. I 255 (1962) 238-240. | MR 139919 | Zbl 0109.08105

[39] J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equ. 26 (1977) 347-374. | MR 508661 | Zbl 0356.34067

[40] K. Nagel, From particle hopping models to traffic flow theory. Transp. Res. Rec. 1644 (1998) 1-9.

[41] P.D. Navin and R.J. Wheeler, Pedestrian flow characteristics. Traffic Engineering 39 (1969) 31-36.

[42] A. Schadschneider, Cellular automaton approach to pedestrian dynamics-theory, in Pedestrian and Evacuation Dynamics, M. Schreckenberg and S.D. Sharma Eds., Springer, Berlin (2001) 75-85.

[43] A. Schadschneider, A. Kirchner and K. Nishinari, From ant trails to pedestrian dynamics. Appl. Bionics & Biomechanics 1 (2003) 11-19.

[44] G.K. Still, New computer system can predict human behavior response to building fires. Fire 84 (1993) 40-41.

[45] J. Venel, Modélisation mathématique et numérique des mouvements de foule. Ph.D. Thesis, Université Paris-Sud XI, France, available at: http://tel.archives-ouvertes.fr/tel-00346035/fr (2008).

[46] J. Venel, Integrating strategies in numerical modelling of crowd motion, in Pedestrian and Evacuation Dynamics '08, W.W.F. Klingsch, C. Rogsch, A. Schadschneider and M. Schreckenberg Eds., Springer, Berlin Heidelberg (2010) 641-646.

[47] J. Venel, Numerical scheme for a whole class of sweeping process. Available at: http://arxiv.org/abs/0904.2694v2 (submitted).

[48] U. Weidmann, Transporttechnik der fussgaenger. Technical Report 90, Schriftenreihe des Instituts für Verkehrsplanung, Transporttechnik, Strassen-und Eisenbahnbau, ETH Zürich, Switzerland (1993).

[49] S.J. Yuhaski and J.M. Macgregor Smith, Modelling circulation systems in buildings using state dependent queueing models. Queue. Syst. 4 (1989) 319-338. | MR 1018524 | Zbl 0669.90050