Bifurcations in a modulation equation for alternans in a cardiac fiber
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) no. 6, pp. 1225-1238.

While alternans in a single cardiac cell appears through a simple period-doubling bifurcation, in extended tissue the exact nature of the bifurcation is unclear. In particular, the phase of alternans can exhibit wave-like spatial dependence, either stationary or travelling, which is known as discordant alternans. We study these phenomena in simple cardiac models through a modulation equation proposed by Echebarria-Karma. As shown in our previous paper, the zero solution of their equation may lose stability, as the pacing rate is increased, through either a Hopf or steady-state bifurcation. Which bifurcation occurs first depends on parameters in the equation, and for one critical case both modes bifurcate together at a degenerate (codimension 2) bifurcation. For parameters close to the degenerate case, we investigate the competition between modes, both numerically and analytically. We find that at sufficiently rapid pacing (but assuming a 1:1 response is maintained), steady patterns always emerge as the only stable solution. However, in the parameter range where Hopf bifurcation occurs first, the evolution from periodic solution (just after the bifurcation) to the eventual standing wave solution occurs through an interesting series of secondary bifurcations.

DOI : https://doi.org/10.1051/m2an/2010028
Classification : 35B32,  92C30
Mots clés : bifurcation, cardiac alternans, modulation equation
@article{M2AN_2010__44_6_1225_0,
author = {Dai, Shu and Schaeffer, David G.},
title = {Bifurcations in a modulation equation for alternans in a cardiac fiber},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
pages = {1225--1238},
publisher = {EDP-Sciences},
volume = {44},
number = {6},
year = {2010},
doi = {10.1051/m2an/2010028},
zbl = {1206.35034},
mrnumber = {2769055},
language = {en},
url = {http://www.numdam.org/articles/10.1051/m2an/2010028/}
}
Dai, Shu; Schaeffer, David G. Bifurcations in a modulation equation for alternans in a cardiac fiber. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) no. 6, pp. 1225-1238. doi : 10.1051/m2an/2010028. http://www.numdam.org/articles/10.1051/m2an/2010028/

[1] J. Carr, Applications of Centre Manifold Theory. Springer-Verlag, New York (1981). | Zbl 0464.58001

[2] S. Dai and D.G. Schaeffer, Spectrum of a linearized amplitude equation for alternans in a cardiac fiber. SIAM J. Appl. Math. 69 (2008) 704-719.

[3] B. Echebarria and A. Karma, Instability and spatiotemporal dynamics of alternans in paced cardiac tissue. Phys. Rev. Lett. 88 (2002) 208101.

[4] B. Echebarria and A. Karma, Amplitude-equation approach to spatiotemporal dynamics of cardiac alternans. Phys. Rev. E 76 (2007) 051911.

[5] A. Garfinkel, Y.-H. Kim, O. Voroshilovsky, Z. Qu, J.R. Kil, M.-H. Lee, H.S. Karagueuzian, J.N. Weiss and P.-S. Chen, Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. USA 97 (2000) 6061-6066.

[6] R.F. Gilmour Jr. and D.R. Chialvo, Electrical restitution, Critical mass, and the riddle of fibrillation. J. Cardiovasc. Electrophysiol. 10 (1999) 1087-1089.

[7] M. Golubitsky and D.G. Schaeffer, Singularities and Groups in Bifurcation Theory. Springer-Verlag, New York (1985). | Zbl 0607.35004

[8] J. Guckenheimer, On a codimension two bifurcation, in Dynamical Systems and Turbulence, Warwick 1980, Lect. Notes in Mathematics 898, Springer (1981) 99-142. | Zbl 0482.58006

[9] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dyanamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York (1983). | Zbl 0515.34001

[10] M.R. Guevara, G. Ward, A. Shrier and L. Glass, Electrical alternans and period doubling bifurcations, in Proceedings of the 11th Computers in Cardiology Conference, IEEE Computer Society, Los Angeles, USA (1984) 167-170.

[11] P. Holmes, Unfolding a degenerate nonlinear oscillator: a codimension two bifurcation, in Nonlinear Dynamics, R.H.G. Helleman Ed., New York Academy of Sciences, New York (1980) 473-488. | Zbl 0506.34034

[12] W.F. Langford, Periodic and steady state interactions lead to tori. SIAM J. Appl. Math. 37 (1979) 22-48. | Zbl 0417.34030

[13] C.C. Mitchell and D.G. Schaeffer, A two-current model for the dynamics of the cardiac membrane. Bull. Math. Biol. 65 (2003) 767-793.

[14] D. Noble, A modification of the Hodgkin-Huxley equations applicable to Purkinje fiber actoin and pacemaker potential. J. Physiol. 160 (1962) 317-352.

[15] J.B. Nolasco and R.W. Dahlen, A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 25 (1968) 191-196.

[16] A.V. Panfilov, Spiral breakup as a model of ventricular fibrillation. Chaos 8 (1998) 57-64. | Zbl 1069.92509