Guillén-González, Francisco; Gutiérrez-Santacreu, Juan Vicente
Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) no. 3 , p. 563-589
Zbl 1171.80006 | MR 2536249
doi : 10.1051/m2an/2009011
URL stable : http://www.numdam.org/item?id=M2AN_2009__43_3_563_0

Classification:  35Q72,  35K65,  65M12,  65M60
We analyze two numerical schemes of Euler type in time and C 0 finite-element type with 1 -approximation in space for solving a phase-field model of a binary alloy with thermal properties. This model is written as a highly non-linear parabolic system with three unknowns: phase-field, solute concentration and temperature, where the diffusion for the temperature and solute concentration may degenerate. The first scheme is nonlinear, unconditionally stable and convergent. The other scheme is linear but conditionally stable and convergent. A maximum principle is avoided in both schemes, using a truncation operator on the L 2 projection onto the 0 finite element for the discrete concentration. In addition, for the model when the heat conductivity and solute diffusion coefficients are constants, optimal error estimates for both schemes are shown based on stability estimates.

Bibliographie

[1] J.L. Boldrini and G. Planas, Weak solutions of a phase-field model for phase change of an alloy with thermal properties. Math. Methods Appl. Sci. 25 (2002) 1177-1193. MR 1925439 | Zbl 1012.35049

[2] J.L. Boldrini and C. Vaz, A semidiscretization scheme for a phase-field type model for solidification. Port. Math. (N.S.) 63 (2006) 261-292. MR 2254930 | Zbl 1117.80002

[3] S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathathematics 15. Springer-Verlag, Berlin (1994). MR 1278258 | Zbl 0804.65101

[4] E. Burman, D. Kessler and J. Rappaz, Convergence of the finite element method applied to an anisotropic phase-field model. Ann. Math. Blaise Pascal 11 (2004) 67-94. Numdam | MR 2077239 | Zbl 1155.74404

[5] G. Caginalp and W. Xie, Phase-field and sharp-interface alloy models. Phys. Rev. E 48 (1993) 1897-1909. MR 1377919

[6] A. Ern and J.L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer, New York (2004). MR 2050138 | Zbl 1059.65103

[7] X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp. 73 (2004) 541-567. MR 2028419 | Zbl 1115.76049

[8] F. Guillén-González and J.V. Gutiérrez-Santacreu, Unconditional stability and convergence of a fully discrete scheme for 2D viscous fluids models with mass diffusion. Math. Comp. 77 (2008) 1495-1524 (electronic). MR 2398778

[9] O. Kavian, Introduction à la Théorie des Points Critiques, Mathématiques et Applications 13. Springer, Berlin (1993). MR 1276944 | Zbl 0797.58005

[10] D. Kessler and J.F. Scheid, A priori error estimates of a finite-element method for an isothermal phase-field model related to the solidification process of a binary alloy. IMA J. Numer. Anal. 22 (2002) 281-305. MR 1897410 | Zbl 1001.76057

[11] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982) 437-445. MR 645661 | Zbl 0483.65007

[12] J.F. Scheid, Global solutions to a degenerate solutal phase field model for the solidification of a binary alloy. Nonlinear Anal. 5 (2004) 207-217. MR 2004094 | Zbl 1073.35136

[13] J. Simon, Compact sets in the Space L p (0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65-97. MR 916688 | Zbl 0629.46031