Bécache, Eliane; Rodríguez, Jeronimo; Tsogka, Chrysoula
Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) no. 2 , p. 377-398
Zbl 1161.65071 | MR 2512501
doi : 10.1051/m2an:2008047
URL stable : http://www.numdam.org/item?id=M2AN_2009__43_2_377_0

Classification:  65M60,  65M12,  65M15,  65C20,  74S05
The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always correctly taken into account when the first family of mixed finite elements is used. We, therefore, introduce the second family of mixed finite elements for which a theoretical convergence analysis is presented and error estimates are obtained. A numerical study of the convergence is also considered for a particular object geometry which shows that our theoretical error estimates are optimal.

Bibliographie

[1] I. Babuška, The finite element method with lagrangian multipliers. Numer. Math. 20 (1973) 179-192. MR 359352 | Zbl 0258.65108

[2] E. Bécache, P. Joly and C. Tsogka, Éléments finis mixtes et condensation de masse en élastodynamique linéaire, (i) Construction. C. R. Acad. Sci. Paris Sér. I 325 (1997) 545-550. MR 1692323 | Zbl 0895.73064

[3] E. Bécache, P. Joly and C. Tsogka, An analysis of new mixed finite elements for the approximation of wave propagation problems. SINUM 37 (2000) 1053-1084. MR 1756415 | Zbl 0958.65102

[4] E. Bécache, P. Joly and C. Tsogka, Fictitious domains, mixed finite elements and perfectly matched layers for 2d elastic wave propagation. J. Comp. Acoust. 9 (2001) 1175-1203. MR 1871063

[5] E. Bécache, P. Joly and C. Tsogka, A new family of mixed finite elements for the linear elastodynamic problem. SINUM 39 (2002) 2109-2132. MR 1897952 | Zbl 1032.74049

[6] E. Bécache, A. Chaigne, G. Derveaux and P. Joly, Time-domain simulation of a guitar: Model and method. J. Acoust. Soc. Am. 6 (2003) 3368-3383.

[7] E. Bécache, J. Rodríguez and C. Tsogka, On the convergence of the fictitious domain method for wave equation problems. Technical Report RR-5802, INRIA (2006).

[8] E. Bécache, J. Rodríguez and C. Tsogka, A fictitious domain method with mixed finite elements for elastodynamics. SIAM J. Sci. Comput. 29 (2007) 1244-1267. MR 2318705 | Zbl pre05288533

[9] J.P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comp. Phys. 114 (1994) 185-200. MR 1294924 | Zbl 0814.65129

[10] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). MR 1115205 | Zbl 0788.73002

[11] F. Collino and C. Tsogka, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heteregeneous media. Geophysics 66 (2001) 294-307.

[12] F. Collino, P. Joly and F. Millot, Fictitious domain method for unsteady problems: Application to electromagnetic scattering. J. Comput. Phys. 138 (1997) 907-938. MR 1607498 | Zbl 1126.78311

[13] S. Garcès, Application des méthodes de domaines fictifs à la modélisation des structures rayonnantes tridimensionnelles. Ph.D. Thesis, SupAero, France (1998).

[14] V. Girault and R. Glowinski, Error analysis of a fictitious domain method applied to a Dirichlet problem. Japan J. Indust. Appl. Math. 12 (1995) 487-514. MR 1356667 | Zbl 0843.65076

[15] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations - Theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986). MR 851383 | Zbl 0585.65077

[16] R. Glowinski, Numerical methods for fluids, Part 3, Chapter 8, in Handbook of Numerical Analysis IX, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (2003) x+1176. MR 2009814 | Zbl 1020.00003

[17] R. Glowinski and Y. Kuznetsov, On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 693-698. MR 1652674 | Zbl 1005.65127

[18] R. Glowinski, T.W. Pan and J. Periaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283-303. MR 1259864 | Zbl 0845.73078

[19] P. Grisvard, Singularities in boundary value problems. Springer-Verlag, Masson (1992). MR 1173209 | Zbl 0766.35001

[20] E. Heikkola, Y.A. Kuznetsov, P. Neittaanmäki and J. Toivanen, Fictitious domain methods for the numerical solution of two-dimensional scattering problems. J. Comput. Phys. 145 (1998) 89-109. MR 1640154 | Zbl 0909.65119

[21] E. Heikkola, T. Rossi and J. Toivanen, A domain embedding method for scattering problems with an absorbing boundary or a perfectly matched layer. J. Comput. Acoust. 11 (2003) 159-174. MR 2013686

[22] E. Hille and R.S. Phillips, Functional analysis and semigroups, Colloquium Publications 31. Rev. edn., Providence, R.I., American Mathematical Society (1957). MR 89373 | Zbl 0078.10004

[23] P. Joly and L. Rhaouti. Analyse numérique - Domaines fictifs, éléments finis H(div) et condition de Neumann : le problème de la condition inf-sup. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1225-1230. MR 1701390 | Zbl 0931.65112

[24] Yu.A. Kuznetsov, Fictitious component and domain decomposition methods for the solution of eigenvalue problems, in Computing methods in applied sciences and engineering VII (Versailles, 1985), North-Holland, Amsterdam (1986) 155-172. Zbl 0677.65033

[25] J.C. Nédélec, A new family of mixed finite elements in 3 . Numer. Math. 50 (1986) 57-81. Zbl 0625.65107

[26] L. Rhaouti, Domaines fictifs pour la modélisation d'un probème d'interaction fluide-structure : simulation de la timbale. Ph.D. Thesis, Paris IX, France (1999).