A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 43 (2009) no. 2, p. 353-375
We analyze Euler-Galerkin approximations (conforming finite elements in space and implicit Euler in time) to coupled PDE systems in which one dependent variable, say u, is governed by an elliptic equation and the other, say p, by a parabolic-like equation. The underlying application is the poroelasticity system within the quasi-static assumption. Different polynomial orders are used for the u- and p-components to obtain optimally convergent a priori bounds for all the terms in the error energy norm. Then, a residual-type a posteriori error analysis is performed. Upon extending the ideas of Verfürth for the heat equation [Calcolo 40 (2003) 195-212], an optimally convergent bound is derived for the dominant term in the error energy norm and an equivalence result between residual and error is proven. The error bound can be classically split into time error, space error and data oscillation terms. Moreover, upon extending the elliptic reconstruction technique introduced by Makridakis and Nochetto [SIAM J. Numer. Anal. 41 (2003) 1585-1594], an optimally convergent bound is derived for the remaining terms in the error energy norm. Numerical results are presented to illustrate the theoretical analysis.
DOI : https://doi.org/10.1051/m2an:2008048
Classification:  65M60,  65M15,  74F10
Keywords: finite element method, energy norm, a posteriori error analysis, hydro-mechanical coupling, poroelasticity
@article{M2AN_2009__43_2_353_0,
     author = {Ern, Alexandre and Meunier, S\'ebastien},
     title = {A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {2},
     year = {2009},
     pages = {353-375},
     doi = {10.1051/m2an:2008048},
     zbl = {1166.76036},
     mrnumber = {2512500},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2009__43_2_353_0}
}
Ern, Alexandre; Meunier, Sébastien. A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 43 (2009) no. 2, pp. 353-375. doi : 10.1051/m2an:2008048. http://www.numdam.org/item/M2AN_2009__43_2_353_0/

[1] I. Babuška, M. Feistauer and P. Šolín, On one approach to a posteriori error estimates for evolution problems solved by the method-of-lines. Numer. Math. 89 (2001) 225-256. | MR 1855826 | Zbl 0993.65103

[2] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10 (2001) 1-102. | MR 2009692 | Zbl 1105.65349

[3] A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2005) 1117-1138. | MR 2136996 | Zbl 1072.65124

[4] M.A. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155-169. | JFM 67.0837.01

[5] C. Chavant and A. Millard, Simulation d'excavation en comportement hydro-mécanique fragile. Technical report, EDF R&D/AMA and CEA/DEN/SEMT (2007) http://www.gdrmomas.org/ex_qualifications.html.

[6] Z. Chen and J. Feng, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp. 73 (2004) 1167-1193. | MR 2047083 | Zbl 1052.65091

[7] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | MR 400739 | Zbl 0368.65008

[8] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | MR 1083324 | Zbl 0732.65093

[9] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems 32 (1995) 706-740. | MR 1335652 | Zbl 0830.65094

[10] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences 159. Springer-Verlag, New York (2004). | MR 2050138 | Zbl 1059.65103

[11] O. Lakkis and Ch. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comp. 75 (2006) 1627-1658. | MR 2240628 | Zbl 1109.65079

[12] Ch. Makridakis and R.H. Nochetto, Ellitpic reconstruction and a posteriori error estimates for elliptic problems. SIAM J. Numer. Anal. 41 (2003) 1585-1594. | MR 2034895 | Zbl 1052.65088

[13] S. Meunier, Analyse d'erreur a posteriori pour les couplages hydro-mécaniques et mise en œuvre dans Code_Aster. Ph.D. Thesis, École nationale des ponts et chaussées, France (2007). | Zbl 0814.00003

[14] M.A. Murad and A.F.D. Loula, Improved accuracy in finite element analysis of Biot's consolidation problem. Comput. Meth. Appl. Mech. Engrg. 95 (1992) 359-382. | MR 1156589 | Zbl 0760.73068

[15] M.A. Murad and A.F.D. Loula, On stability and convergence of finite element approximations of Biot's consolidation problem. Internat. J. Numer. Methods Engrg. 37 (1994) 645-667. | MR 1257948 | Zbl 0791.76047

[16] M.A. Murad, V. Thomée and A.F.D. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem. SIAM J. Numer. Anal. 33 (1996) 1065-1083. | MR 1393902 | Zbl 0854.76053

[17] M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | MR 1673951 | Zbl 0935.65105

[18] R.L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | MR 1011446 | Zbl 0696.65007

[19] R.E. Showalter, Diffusion in deformable media. IMA Volumes in Mathematics and its Applications 131 (2000) 115-130. | MR 1961678 | Zbl 1029.74016

[20] R.E. Showalter, Diffusion in poro-elastic media. J. Math. Anal. Appl. 251 (2000) 310-340. | MR 1790411 | Zbl 0979.74018

[21] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997). | MR 1479170 | Zbl 0884.65097

[22] R. Verfürth, A posteriori error estimations and adaptative mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67-83. | Zbl 0811.65089

[23] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, Chichester, UK (1996). | Zbl 0853.65108

[24] R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195-212. | MR 2025602 | Zbl 1168.65418

[25] K. Von Terzaghi, Theoretical Soil Mechanics. Wiley, New York (1936).

[26] M. Wheeler, A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723-759. | MR 351124 | Zbl 0232.35060