Gittelson, Claude J.; Hiptmair, Ralf; Perugia, Ilaria
Plane wave discontinuous Galerkin methods : analysis of the h-version
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) no. 2 , p. 297-331
Zbl 1165.65076 | MR 2512498 | 1 citation dans Numdam
doi : 10.1051/m2an/2009002
URL stable : http://www.numdam.org/item?id=M2AN_2009__43_2_297_0

Classification:  65N15,  65N30,  35J05
We are concerned with a finite element approximation for time-harmonic wave propagation governed by the Helmholtz equation. The usually oscillatory behavior of solutions, along with numerical dispersion, render standard finite element methods grossly inefficient already in medium-frequency regimes. As an alternative, methods that incorporate information about the solution in the form of plane waves have been proposed. We focus on a class of Trefftz-type discontinuous Galerkin methods that employs trial and test spaces spanned by local plane waves. In this paper we give a priori convergence estimates for the h-version of these plane wave discontinuous Galerkin methods in two dimensions. To that end, we develop new inverse and approximation estimates for plane waves and use these in the context of duality techniques. Asymptotic optimality of the method in a mesh dependent norm can be established. However, the estimates require a minimal resolution of the mesh beyond what it takes to resolve the wavelength. We give numerical evidence that this requirement cannot be dispensed with. It reflects the presence of numerical dispersion.

Bibliographie

[1] M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42 (2004) 563-575. MR 2084226 | Zbl 1074.65112

[2] D. Arnold, F. Brezzi, B. Cockburn and L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. MR 1885715 | Zbl 1008.65080

[3] I. Babuška and J. Melenk, The partition of unity method. Int. J. Numer. Methods Eng. 40 (1997) 727-758. MR 1429534 | Zbl 0949.65117

[4] I. Babuška and S. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation? SIAM Review 42 (2000) 451-484. MR 1786934 | Zbl 0956.65095

[5] L. Banjai and S. Sauter, A refined Galerkin error and stability analysis for highly indefinite variational problems. Report 03-06, Institut für Mathematik, Universität Zürich, Zürich, Switzerland (2006). MR 2285843 | Zbl 1138.65101

[6] S. Brenner and R. Scott, Mathematical theory of finite element methods, Texts in Applied Mathematics. Springer-Verlag, New York, 2nd edn. (2002). MR 1894376 | Zbl 0804.65101

[7] A. Buffa and P. Monk, Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM: M2AN 42 (2008) 925-940. Numdam | MR 2473314 | Zbl 1155.65094

[8] P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676-1706. MR 1813251 | Zbl 0987.65111

[9] O. Cessenat, Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques. Ph.D. Thesis, Université Parix IX Dauphine, Paris, France (1996).

[10] O. Cessenat and B. Després, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal. 35 (1998) 255-299. MR 1618464 | Zbl 0955.65081

[11] O. Cessenat and B. Després, Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation. J. Comp. Acoust. 11 (2003) 227-238. MR 2013687

[12] P. Cummings and X.-B. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16 (2006) 139-160. MR 2194984 | Zbl 1134.35317

[13] B. Despres, Sur une formulation variationnelle de type ultra-faible. C. R. Acad. Sci. Paris, Ser. I 318 (1994) 939-944. MR 1278156 | Zbl 0806.35026

[14] C. Farhat, I. Harari and U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003) 1389-1419. MR 1963058 | Zbl 1027.76028

[15] C. Farhat, R. Tezaur and P. Weidemann-Goiran, Higher-order extensions of a discontinuous Galerkin method for mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engr. 61 (2004) 1938-1956. MR 2099956 | Zbl 1075.76572

[16] G. Gabard, Discontinuous Galerkin methods with plane waves for the displacement-based acoustic equation. Int. J. Numer. Meth. Engr. 66 (2006) 549-569. MR 2222193 | Zbl 1110.76313

[17] G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comp. Phys. 225 (2007) 1961-1984. MR 2349691 | Zbl 1123.65102

[18] C. Gittelson, R. Hiptmair and I. Perugia, Plane wave discontinuous Galerkin methods. Preprint NI07088-HOP, Isaac Newton Institute Cambride, Cambrid, UK (2007). Available at http://www.newton.cam.ac.uk/preprints/NI07088.pdf.

[19] U. Hetmaniuk, Stability estimates for a class of Helmholtz problems. Communications in Mathematical Sciences 5 (2007) 665-678. MR 2352336 | Zbl 1135.35323

[20] R. Hiptmair and P. Ledger, A quadrilateral edge element scheme with minimum dispersion. Report 2003-17, SAM, ETH Zürich, Zürich, Switzerland (2003).

[21] T. Huttunen and P. Monk, The use of plane waves to approximate wave propagation in anisotropic media. J. Comput. Math. 25 (2007) 350-367. MR 2320239

[22] T. Huttunen, P. Monk and J. Kaipio, Computational aspects of the ultra-weak variational formulation. J. Comp. Phys. 182 (2002) 27-46. MR 1936802 | Zbl 1015.65064

[23] T. Huttunen, M. Malinen and P. Monk, Solving Maxwell's equations using the ultra weak variational formulation. J. Comp. Phys. 223 (2007) 731-758. MR 2319231 | Zbl 1117.78011

[24] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Applied Mathematical Sciences 132. Springer-Verlag, New York (1998). MR 1639879 | Zbl 0908.65091

[25] O. Laghrouche, P. Bettes and R. Astley, Modelling of short wave diffraction problems using approximating systems of plane waves. Int. J. Numer. Meth. Engr. 54 (2002) 1501-1533. Zbl 1098.76574

[26] J. Melenk, On Generalized Finite Element Methods. Ph.D. Thesis, University of Maryland, USA (1995).

[27] P. Monk and D. Wang, A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1999) 121-136. MR 1692914 | Zbl 0943.65127

[28] E. Perrey-Debain, O. Laghrouche and P. Bettess, Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering. Phil. Trans. R. Soc. London A 362 (2004) 561-577. MR 2075907 | Zbl 1073.78016

[29] H. Riou, P. Ladevéze and B. Sourcis, The multiscale VTCR approach applied to acoustics problems. J. Comp. Acoust. (2008) (to appear).

[30] A. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959-962. MR 373326 | Zbl 0321.65059

[31] C. Schwab, p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics, Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998). MR 1695813 | Zbl 0910.73003

[32] M. Stojek, Least-squares Trefftz-type elements for the Helmholtz equation. Int. J. Numer. Meth. Engr. 41 (1998) 831-849. MR 1607804 | Zbl 0909.76052

[33] R. Tezaur and C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engr. 66 (2006) 796-815. MR 2219901 | Zbl 1110.76319