A finite element discretization of the contact between two membranes
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 43 (2009) no. 1, p. 33-52

From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.

DOI : https://doi.org/10.1051/m2an/2008041
Classification:  65N30,  73K10,  73T05
Keywords: unilateral contact, variational inequalities, finite elements, a priori and a posteriori analysis
@article{M2AN_2009__43_1_33_0,
     author = {Belgacem, Faker Ben and Bernardi, Christine and Blouza, Adel and Vohral\'\i k, Martin},
     title = {A finite element discretization of the contact between two membranes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {1},
     year = {2009},
     pages = {33-52},
     doi = {10.1051/m2an/2008041},
     zbl = {1157.74036},
     mrnumber = {2494793},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2009__43_1_33_0}
}
Belgacem, Faker Ben; Bernardi, Christine; Blouza, Adel; Vohralík, Martin. A finite element discretization of the contact between two membranes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 43 (2009) no. 1, pp. 33-52. doi : 10.1051/m2an/2008041. http://www.numdam.org/item/M2AN_2009__43_1_33_0/

[1] M. Ainsworth, J.T. Oden and C.Y. Lee, Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differential Equations 9 (1993) 23-33. | MR 1193438 | Zbl 0768.65032

[2] F. Ali Mehmeti and S. Nicaise, Nonlinear interaction problems. Nonlinear Anal. Theory Methods Appl. 20 (1993) 27-61. | MR 1199063 | Zbl 0817.35035

[3] C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques & Applications 45. Springer-Verlag (2004). | MR 2068204 | Zbl 1063.65119

[4] H. Brezis and G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques. Bull. Soc. Math. France 96 (1968) 153-180. | Numdam | MR 239302 | Zbl 0165.45601

[5] F. Brezzi, W.W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, II. Mixed methods. Numer. Math. 31 (1978-1979) 1-16. | MR 508584 | Zbl 0427.65077

[6] Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | MR 1742264 | Zbl 0943.65075

[7] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York, Oxford (1978). | MR 520174 | Zbl 0383.65058

[8] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17-351. | MR 1115237 | Zbl 0875.65086

[9] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 R2 (1975) 77-84. | Numdam | MR 400739 | Zbl 0368.65008

[10] I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod & Gauthier-Villars (1974). | MR 463993 | Zbl 0281.49001

[11] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | MR 851383 | Zbl 0585.65077

[12] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). | MR 775683 | Zbl 0695.35060

[13] J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1996) 313-485. | MR 1422506 | Zbl 0873.73079

[14] P. Hild and S. Nicaise, Residual a posteriori error estimators for contact problems in elasticity. ESAIM: M2AN 41 (2007) 897-923. | Numdam | MR 2363888 | Zbl 1140.74024

[15] J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493-519. | MR 216344 | Zbl 0152.34601

[16] R.H. Nochetto, K.G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163-195. | MR 1993943 | Zbl 1027.65089

[17] G. Raugel, Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Sér. A-B 286 (1978) A791-A794. | MR 497667 | Zbl 0377.65058

[18] L. Slimane, A. Bendali and P. Laborde, Mixed formulations for a class of variational inequalities. ESAIM: M2AN 38 (2004) 177-201. | Numdam | MR 2073936 | Zbl 1100.65059

[19] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). | Zbl 0853.65108

[20] B.I. Wohlmuth, An a posteriori error estimator for two body contact problems on non-matching meshes. J. Sci. Computing 33 (2007) 25-45. | MR 2338331 | Zbl 1127.74047