Inner products in covolume and mimetic methods
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 42 (2008) no. 6, p. 941-959

A class of compatible spatial discretizations for solving partial differential equations is presented. A discrete exact sequence framework is developed to classify these methods which include the mimetic and the covolume methods as well as certain low-order finite element methods. This construction ensures discrete analogs of the differential operators that satisfy the identities and theorems of vector calculus, in particular a Helmholtz decomposition theorem for the discrete function spaces. This paper demonstrates that these methods differ only in their choice of discrete inner product. Finally, certain uniqueness results for the covolume inner product are shown.

DOI : https://doi.org/10.1051/m2an:2008030
Classification:  65N06
Keywords: compatible discretization, discrete Helmholtz orthogonality, discrete exact sequence, mimetic method, covolume method
@article{M2AN_2008__42_6_941_0,
     author = {Trapp, Kathryn A.},
     title = {Inner products in covolume and mimetic methods},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {6},
     year = {2008},
     pages = {941-959},
     doi = {10.1051/m2an:2008030},
     zbl = {1155.65103},
     mrnumber = {2473315},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2008__42_6_941_0}
}
Inner products in covolume and mimetic methods. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 42 (2008) no. 6, pp. 941-959. doi : 10.1051/m2an:2008030. http://www.numdam.org/item/M2AN_2008__42_6_941_0/

[1] D.N. Arnold, Differential complexes and numerical stability, in Proceedings of the International Congress of Mathematicians, Vol. I, Higher Ed. Press, Beijing (2002) 137-157. | MR 1989182 | Zbl 1023.65113

[2] M. Berndt, K. Lipnikov, D. Moulton and M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation. East-West J. Numer. Math 9 (2001) 253-316. | MR 1879474 | Zbl 1014.65114

[3] P. Bochev and J.M. Hyman, Principles of mimetic discretizations of differential operators, in Compatible Spatial Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications 142, Springer, New York (2006). | MR 2249347 | Zbl 1110.65103

[4] A. Bossavit, Generating whitney forms of polynomial degree one and higher. IEEE Trans. Magn. 38 (2002) 341-344.

[5] R. Hiptmair, Canonical construction of finite elements. Math. Comp. 68 (1999) 1325-1346. | MR 1665954 | Zbl 0938.65132

[6] A. Hirani, Discrete Exterior Calculus. Ph.D. thesis, California Institute of Technology, USA (2003).

[7] J.M. Hyman and M. Shashkov, The adjoint operators for the natural discretizations for the divergence, gradient, and curl on logically rectangular grids. IMACS J. Appl. Num. Math. 25 (1997) 1-30. | MR 1490922 | Zbl 1005.65024

[8] J.M. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33 (1997) 81-104. | MR 1433461 | Zbl 0868.65006

[9] J.M. Hyman and M. Shashkov, Mimetic discretizations for Maxwell's equations. J. Comp. Phys. 151 (1999) 881-909. | MR 1686385 | Zbl 0956.78015

[10] J.M. Hyman and M. Shashkov, The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal. 36 (1999) 788-818. | MR 1681037 | Zbl 0972.65077

[11] J.C. Nedelec, Mixed finite elements in 3 . Numer. Math. 35 (1980) 315-341. | MR 592160 | Zbl 0419.65069

[12] J.C. Nedelec, A new family of mixed finite elements in 3 . Numer. Math. 50 (1986) 57-81. | MR 864305 | Zbl 0625.65107

[13] R.A. Nicolaides, Direct discretization of planar div-curl problems. SIAM J. Numer. Anal. 29 (1992) 32-56. | MR 1149083 | Zbl 0745.65063

[14] R. Nicolaides and K. Trapp, Covolume discretizations of differential forms, in Compatible Spatial Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications 142, Springer, New York (2006). | MR 2249350 | Zbl 1110.65024

[15] R.A. Nicolaides and D.Q. Wang, Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions. Math. Comp. 67 (1998) 947-963. | MR 1474654 | Zbl 0907.65116

[16] R.A. Nicolaides and X. Wu, Covolume solutions of three-dimensional div-curl equations. SIAM J. Numer. Anal. 34 (1997) 2195-2203. | MR 1480375 | Zbl 0889.35006

[17] P.A. Raviart and J.M. Thomas, A mixed finite elemnt method for second order elliptic problems, in Springer Lecture Notes in Mathematics 606, Springer-Verlag (1977) 292-315. | MR 483555 | Zbl 0362.65089

[18] K. Trapp, A Class of Compatible Discretizations with Applications to Div-Curl Systems. Ph.D. thesis, Carnegie Mellon University, USA (2004).