The change in electric potential due to lightning
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 42 (2008) no. 5, p. 887-901

The change in the electric potential due to lightning is evaluated. The potential along the lightning channel is a constant which is the projection of the pre-flash potential along a piecewise harmonic eigenfunction which is constant along the lightning channel. The change in the potential outside the lightning channel is a harmonic function whose boundary conditions are expressed in terms of the pre-flash potential and the post-flash potential along the lightning channel. The expression for the lightning induced electric potential change is derived both for the continuous equations, and for a spatially discretized formulation of the continuous equations. The results for the continuous equations are based on the properties of the eigenvalues and eigenfunctions of the following generalized eigenproblem: Find $u\in {H}_{0}^{1}\left(\Omega \right)$, $u\ne 0$, and $\lambda \in ℝ$ such that ${〈\nabla u,\nabla v〉}_{ℒ}=\lambda {〈\nabla u,\nabla v〉}_{\Omega }$ for all $v\in {H}_{0}^{1}\left(\Omega \right)$, where $\Omega \subset {ℝ}^{n}$ is a bounded domain (a box containing the thunderstorm), $ℒ$ is a subdomain (the lightning channel), and ${〈·,·〉}_{\Omega }$ is the inner product ${〈\nabla u,\nabla v〉}_{\Omega }={\int }_{\Omega }\nabla u·\nabla v\phantom{\rule{0.277778em}{0ex}}\mathrm{d}x.$

DOI : https://doi.org/10.1051/m2an:2008026
Classification:  35J25,  35Q60,  35A20,  35P10
Keywords: lightning, electric potential, Ampere's law, Maxwell's equations, laplacian, generalized eigenproblem, double layer potential, complete eigenbasis
@article{M2AN_2008__42_5_887_0,
author = {Hager, William W. and Aslan, Beyza Caliskan},
title = {The change in electric potential due to lightning},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
publisher = {EDP-Sciences},
volume = {42},
number = {5},
year = {2008},
pages = {887-901},
doi = {10.1051/m2an:2008026},
zbl = {1152.35027},
mrnumber = {2454626},
language = {en},
url = {http://www.numdam.org/item/M2AN_2008__42_5_887_0}
}

Hager, William W.; Aslan, Beyza Caliskan. The change in electric potential due to lightning. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 42 (2008) no. 5, pp. 887-901. doi : 10.1051/m2an:2008026. http://www.numdam.org/item/M2AN_2008__42_5_887_0/

[1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030

[2] B.C. Aslan, W.W. Hager and S. Moskow, A generalized eigenproblem for the Laplacian which arises in lightning. J. Math. Anal. Appl. 341 (2008) 1028-1041. | MR 2398267 | Zbl 1137.35047

[3] R.F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, New York (1995). | MR 1351248 | Zbl 0839.93001

[4] W.W. Hager, A discrete model for the lightning discharge. J. Comput. Phys. 144 (1998) 137-150. | MR 1633021

[5] W.W. Hager, J.S. Nisbet and J.R. Kasha, The evolution and discharge of electric fields within a thunderstorm. J. Comput. Phys. 82 (1989) 193-217. | MR 1005208 | Zbl 0671.65101

[6] W.W. Hager, J.S. Nisbet, J.R. Kasha and W.-C. Shann, Simulations of electric fields within a thunderstorm. J. Atmos. Sci. 46 (1989) 3542-3558.

[7] W.W. Hager, R.G. Sonnenfeld, B.C. Aslan, G. Lu, W.P. Winn and W.L. Boeck, Analysis of charge transport during lightning using balloon borne electric field sensors and LMA. J. Geophys. Res. 112 (2007) DOI: 10.1029/2006JD008187.

[8] C.L. Lennon, LDAR: new lightning detection and ranging system. EOS Trans. AGU 56 (1975) 991.

[9] L. Maier, C. Lennon, T. Britt and S. Schaefer, LDAR system performance and analysis, in The 6th conference on aviation weather systems, American Meteorological Society, Boston, MA (1995).

[10] T.C. Marshall and M. Stolzenburg, Voltages inside and just above thunderstorms. J. Geophys. Res. 106 (2001) 4757-4768.

[11] B.N. Parlett, The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ (1980). | MR 570116 | Zbl 0431.65017

[12] D.E. Proctor, A hyperbolic system for obtaining VHF radio pictures of lightning. J. Geophys. Res. 76 (1971) 1478-1489.

[13] D.E. Proctor, VHF radio pictures of cloud flashes. J. Geophys. Res. 86 (1981) 4041-4071.

[14] V.A. Rakov and M.A. Uman, Lightning Physics and Effects. Cambridge University Press, Cambridge (2003).

[15] W. Rison, R.J. Thomas, P.R. Krehbiel, T. Hamlin and J. Harlin, A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett. 26 (1999) 3573-3576.

[16] G. Strang, Linear Algebra and Its Applications. Thomson, Belmont, CA, 4th edn. (2006).

[17] R.J. Thomas, P.R. Krehbiel, W. Rison, T. Hamlin, J. Harlin and D. Shown, Observations of VHF source powers radiated by lightning. Geophys. Res. Lett. 28 (2001) 143-146.

[18] R.J. Thomas, P.R. Krehbiel, W. Rison, S.J. Hunyady, W.P. Winn, T. Hamlin and J. Harlin, Accuracy of the lightning mapping array. J. Geophys. Res. 109 (2004) D14207.