An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 42 (2008) no. 2, p. 303-331

We present in this paper a pressure correction scheme for the barotropic compressible Navier-Stokes equations, which enjoys an unconditional stability property, in the sense that the energy and maximum-principle-based a priori estimates of the continuous problem also hold for the discrete solution. The stability proof is based on two independent results for general finite volume discretizations, both interesting for their own sake: the L 2 -stability of the discrete advection operator provided it is consistent, in some sense, with the mass balance and the estimate of the pressure work by means of the time derivative of the elastic potential. The proposed scheme is built in order to match these theoretical results, and combines a fractional-step time discretization of pressure-correction type with a space discretization associating low order non-conforming mixed finite elements and finite volumes. Numerical tests with an exact smooth solution show the convergence of the scheme.

DOI : https://doi.org/10.1051/m2an:2008005
Classification:  35Q30,  65N12,  65N30,  76M25
Keywords: compressible Navier-Stokes equations, pressure correction schemes
@article{M2AN_2008__42_2_303_0,
     author = {Gallou\"et, Thierry and Gastaldo, Laura and Herbin, Raphaele and Latch\'e, Jean-Claude},
     title = {An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {2},
     year = {2008},
     pages = {303-331},
     doi = {10.1051/m2an:2008005},
     zbl = {1132.35433},
     mrnumber = {2405150},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2008__42_2_303_0}
}
Gallouët, Thierry; Gastaldo, Laura; Herbin, Raphaele; Latché, Jean-Claude. An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 42 (2008) no. 2, pp. 303-331. doi : 10.1051/m2an:2008005. http://www.numdam.org/item/M2AN_2008__42_2_303_0/

[1] P. Angot, V. Dolejší, M. Feistauer and J. Felcman, Analysis of a combined barycentric finite volume-nonconforming finite element method for nonlinear convection-diffusion problems. Appl. Math. 4 (1998) 263-310. | MR 1627989 | Zbl 0942.76035

[2] H. Bijl and P. Wesseling, A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comp. Phys. 141 (1998) 153-173. | MR 1619651 | Zbl 0918.76054

[3] M.O. Bristeau, R. Glowinski, L. Dutto, J. Périaux and G. Rogé, Compressible viscous flow calculations using compatible finite element approximations. Internat. J. Numer. Methods Fluids 11 (1990) 719-749. | MR 1076434 | Zbl 0704.76036

[4] V. Casulli and D. Greenspan, Pressure method for the numerical solution of transient, compressible fluid flows. Internat. J. Numer. Methods Fluids 4 (1984) 1001-1012. | Zbl 0549.76050

[5] A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745-762. | MR 242392 | Zbl 0198.50103

[6] P.G. Ciarlet, Finite elements methods - Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, P. Ciarlet and J.-L. Lions Eds., North Holland (1991) 17-351. | MR 1115235 | Zbl 0875.65086

[7] P. Colella and K. Pao, A projection method for low speed flows. J. Comp. Phys. 149 (1999) 245-269. | MR 1672739 | Zbl 0935.76056

[8] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 7 (1973) 33-75. | Numdam | MR 343661 | Zbl 0302.65087

[9] K. Deimling, Nonlinear Functional Analysis. Springer, New-York (1980). | MR 787404 | Zbl 0559.47040

[10] I. Demirdžić, Ž. Lilek and M. Perić, A collocated finite volume method for predicting flows at all speeds. Internat. J. Numer. Methods Fluids 16 (1993) 1029-1050. | Zbl 0774.76066

[11] V. Dolejší, M. Feistauer, J. Felcman and A. Kliková, Error estimates for barycentric finite volumes combined with nonconforming finite elements applied to nonlinear convection-diffusion problems. Appl. Math. 47 (2002) 301-340. | MR 1914117 | Zbl 1090.76550

[12] A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer (2004). | MR 2050138 | Zbl 1059.65103

[13] R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563-594. | MR 1681074 | Zbl 0973.65078

[14] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis VII, P. Ciarlet and J.-L. Lions Eds., North Holland (2000) 713-1020. | MR 1804748 | Zbl 0981.65095

[15] E. Feireisl, Dynamics of viscous compressible flows, Oxford Lecture Series in Mathematics and its Applications 6. Oxford University Press (2004). | MR 2040667 | Zbl 1080.76001

[16] H. Feistauer, J. Felcman and I. Straškraba, Mathematical and computational methods for compressible flows, Oxford Science Publications. Clarendon Press (2003). | MR 2261900 | Zbl 1028.76001

[17] M. Fortin, H. Manouzi and A. Soulaimani, On finite element approximation and stabilization methods for compressible viscous flows. Internat. J. Numer. Methods Fluids 17 (1993) 477-499. | MR 1235003 | Zbl 0784.76048

[18] J.-L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows. J. Comp. Phys. 165 (2000) 167-188. | MR 1795396 | Zbl 0994.76051

[19] J.-L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011-6045. | MR 2250931 | Zbl 1122.76072

[20] F.H. Harlow and A.A. Amsden, Numerical calculation of almost incompressible flow. J. Comp. Phys. 3 (1968) 80-93. | Zbl 0172.52903

[21] F.H. Harlow and A.A. Amsden, A numerical fluid dynamics calculation method for all flow speeds. J. Comp. Phys. 8 (1971) 197-213. | Zbl 0221.76011

[22] R.I. Issa, Solution of the implicitly discretised fluid flow equations by operator splitting. J. Comp. Phys. 62 (1985) 40-65. | MR 825890 | Zbl 0619.76024

[23] R.I. Issa and M.H. Javareshkian, Pressure-based compressible calculation method utilizing total variation diminishing schemes. AIAA J. 36 (1998) 1652-1657.

[24] R.I. Issa, A.D. Gosman and A.P. Watkins, The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J. Comp. Phys. 62 (1986) 66-82. | MR 825891 | Zbl 0575.76008

[25] K.C. Karki and S.V. Patankar, Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J. 27 (1989) 1167-1174.

[26] M.H. Kobayashi and J.C.F. Pereira, Characteristic-based pressure correction at all speeds. AIAA J. 34 (1996) 272-280. | Zbl 0895.76054

[27] B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comp. Phys. 95 (1991) 59-84. | MR 1112315 | Zbl 0725.76090

[28] P.-L. Lions, Mathematical topics in fluid mechanics, Volume 2: Compressible models, Oxford Lecture Series in Mathematics and its Applications 10, Oxford University Press (1998). | MR 1637634 | Zbl 0908.76004

[29] M. Marion and R. Temam, Navier-Stokes equations: Theory and approximation, in Handbook of Numerical Analysis VI, P. Ciarlet and J.-L. Lions Eds., North Holland (1998). | MR 1665429 | Zbl 0921.76040

[30] F. Moukalled and M. Darwish, A high-resolution pressure-based algorithm for fluid flow at all speeds. J. Comp. Phys. 168 (2001) 101-133. | MR 1826910 | Zbl 0991.76047

[31] P. Nithiarasu, R. Codina and O.C. Zienkiewicz, The Characteristic-Based Split (CBS) scheme - a unified approach to fluid dynamics. Internat. J. Numer. Methods Engrg. 66 (2006) 1514-1546. | MR 2230959 | Zbl 1110.76324

[32] A. Novotný and I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications 27. Oxford University Press (2004). | MR 2084891 | Zbl 1088.35051

[33] G. Patnaik, R.H. Guirguis, J.P. Boris and E.S. Oran, A barely implicit correction for flux-corrected transport. J. Comp. Phys. 71 (1987) 1-20. | Zbl 0613.76077

[34] E.S. Politis and K.C. Giannakoglou, A pressure-based algorithm for high-speed turbomachinery flows. Internat. J. Numer. Methods Fluids 25 (1997) 63-80. | Zbl 0882.76057

[35] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential Equations 8 (1992) 97-111. | MR 1148797 | Zbl 0742.76051

[36] R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II. Arch. Rat. Mech. Anal. 33 (1969) 377-385. | MR 244654 | Zbl 0207.16904

[37] D.R. Van Der Heul, C. Vuik and P. Wesseling, Stability analysis of segregated solution methods for compressible flow. Appl. Numer. Math. 38 (2001) 257-274. | MR 1847066 | Zbl 1017.76065

[38] D.R. Van Der Heul, C. Vuik and P. Wesseling, A conservative pressure-correction method for flow at all speeds. Comput. Fluids 32 (2003) 1113-1132. | MR 1966263 | Zbl 1046.76033

[39] J.P. Van Dormaal, G.D. Raithby and B.H. Mcdonald, The segregated approach to predicting viscous compressible fluid flows. Trans. ASME 109 (1987) 268-277.

[40] D. Vidović, A. Segal and P. Wesseling, A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids. J. Comput. Phys. 217 (2006) 277-294. | MR 2260602 | Zbl 1101.76037

[41] C. Wall, C.D. Pierce and P. Moin, A semi-implicit method for resolution of acoustic waves in low Mach number flows. J. Comp. Phys. 181 (2002) 545-563. | MR 1927401 | Zbl pre01845985

[42] I. Wenneker, A. Segal and P. Wesseling, A Mach-uniform unstructured staggered grid method. Internat. J. Numer. Methods Fluids 40 (2002) 1209-1235. | MR 1939062 | Zbl 1025.76023

[43] P. Wesseling, Principles of computational fluid dynamics, Springer Series in Computational Mathematics 29. Springer (2001). | MR 1796357 | Zbl 0960.76002

[44] O.C. Zienkiewicz and R. Codina, A general algorithm for compressible and incompressible flow - Part I. The split characteristic-based scheme. Internat. J. Numer. Methods Fluids 20 (1995) 869-885. | MR 1333910 | Zbl 0837.76043