Numerical homogenization of well singularities in the flow transport through heterogeneous porous media : fully discrete scheme
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 41 (2007) no. 5, p. 945-957

Motivated by well-driven flow transport in porous media, Chen and Yue proposed a numerical homogenization method for Green function [Multiscale Model. Simul. 1 (2003) 260-303]. In that paper, the authors focused on the well pore pressure, so the local error analysis in maximum norm was presented. As a continuation, we will consider a fully discrete scheme and its multiscale error analysis on the velocity field.

DOI : https://doi.org/10.1051/m2an:2007044
Classification:  65N30,  65N15
Keywords: numerical homogenization, well-driven flow, heterogeneous porous medium, multiscale finite element
@article{M2AN_2007__41_5_945_0,
     author = {Jiang, Meiqun and Yue, Xingye},
     title = {Numerical homogenization of well singularities in the flow transport through heterogeneous porous media : fully discrete scheme},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {5},
     year = {2007},
     pages = {945-957},
     doi = {10.1051/m2an:2007044},
     zbl = {1140.76437},
     mrnumber = {2363890},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2007__41_5_945_0}
}
Jiang, Meiqun; Yue, Xingye. Numerical homogenization of well singularities in the flow transport through heterogeneous porous media : fully discrete scheme. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 41 (2007) no. 5, pp. 945-957. doi : 10.1051/m2an:2007044. http://www.numdam.org/item/M2AN_2007__41_5_945_0/

[1] I. Babuska, G. Caloz and J. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31 (1994) 945-981. | Zbl 0807.65114

[2] Z. Chen and T.Y. Hou, A mixed multiscale finite element method for elliptic problem with oscillating coefficients. Math. Comp. 72 (2003) 541-576. | Zbl 1017.65088

[3] Z. Chen and X. Yue, Numerical homogenization of well singularities in the flow transport through heterogeneous porous media. Multiscale Model. Simul. 1 (2003) 260-303. | Zbl 1107.76073

[4] L.J. Durlofsky, Numerical-calculation of equivalent grid block permeability tensors for heterogeous porous media. Water Resour. Res. 27 (1991) 699-708.

[5] L.J. Durlofsky, W.J. Milliken and A. Bernath, Scale up in the Near-Well Region, SPE 51940, in Proceedings of the 15th SPE Symposium on Reservoir Simulation, Houston, February (1999) 14-17.

[6] W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87-132. | Zbl 1093.35012

[7] Y.R. Efendiev, T.Y. Hou and X.H. Wu, The convergence of non-conforming multiscale finite element methods. SIAM J. Numer. Anal. 37 (2000) 888-910. | Zbl 0951.65105

[8] A. Gloria, A direct approach to numerical homogenization in finite elasticity. Netw. Heterog. Media 1 (2006) 109-141. | Zbl pre05142461

[9] A. Gloria, A analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. Multiscale Model. Simul. 5 (2006) 996-1043. | Zbl 1119.74038

[10] T.Y. Hou and X.H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169-189. | Zbl 0880.73065

[11] T.Y. Hou, X.H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68 (1999) 913-943. | Zbl 0922.65071

[12] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). | MR 1329546 | Zbl 0838.35001

[13] O. Mascarenhas and L.J. Durlofsky, Scale up in the vicinity of horizontal wells, in Proceedings of the 20th Annual International Energy Agency Workshop and Symposium, Paris, September (1999) 22-24.

[14] A.M. Matache, I. Babuska and C. Schwab, Generalized p-FEM in homogenization. Numer. Math. 86 (2000) 319-375. | Zbl 0964.65125

[15] D.W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulations. Soc. Pet. Eng. J. 18 (1978) 183-194.

[16] X.H. Wen and J.J. Gomez-Hernandez, Upscaling hydraulic conductivities in heterogeneous media: an overview. J. Hydrol. 183 (1996) ix-xxxii.