This paper deals with the mortar spectral element discretization of two equivalent problems, the Laplace equation and the Darcy system, in a domain which corresponds to a nonhomogeneous anisotropic medium. The numerical analysis of the discretization leads to optimal error estimates and the numerical experiments that we present enable us to verify its efficiency.
Keywords: Mortar method, spectral elements, Laplace equation, Darcy equation
@article{M2AN_2007__41_4_801_0,
author = {Belhachmi, Zakaria and Bernardi, Christine and Karageorghis, Andreas},
title = {Mortar spectral element discretization of the {Laplace} and {Darcy} equations with discontinuous coefficients},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {801--824},
year = {2007},
publisher = {EDP Sciences},
volume = {41},
number = {4},
doi = {10.1051/m2an:2007035},
mrnumber = {2362915},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2007035/}
}
TY - JOUR AU - Belhachmi, Zakaria AU - Bernardi, Christine AU - Karageorghis, Andreas TI - Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 801 EP - 824 VL - 41 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2007035/ DO - 10.1051/m2an:2007035 LA - en ID - M2AN_2007__41_4_801_0 ER -
%0 Journal Article %A Belhachmi, Zakaria %A Bernardi, Christine %A Karageorghis, Andreas %T Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 801-824 %V 41 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2007035/ %R 10.1051/m2an:2007035 %G en %F M2AN_2007__41_4_801_0
Belhachmi, Zakaria; Bernardi, Christine; Karageorghis, Andreas. Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 4, pp. 801-824. doi: 10.1051/m2an:2007035
[1] and, Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C.R. Acad. Sci. Paris Série I 333 (2001) 693-698. | Zbl
[2] , and, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | Zbl
[3] , The Mortar finite element method with Lagrangian multiplier. Numer. Math. 84 (1999) 173-197. | Zbl
[4] and, Mortar spectral element methods for elliptic equations with discontinuous coefficients. Math. Models Methods Appl. Sci. 12 (2002) 497-524. | Zbl
[5] and, Spectral Methods, in the Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209-485.
[6] and, Spectral element discretizations of the Poisson equation with mixed boundary conditions. Appl. Math. Inform. 6 (2001) 1-29. | Zbl
[7] and, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579-608. | Zbl
[8] , and, Relèvements de traces préservant les polynômes. C.R. Acad. Sci. Paris Série I 315 (1992) 333-338. | Zbl
[9] , and, A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar XI, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13-51. | Zbl
[10] , and, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques et Applications 45. Springer-Verlag (2004). | Zbl | MR
[11] , and, Basics and some applications of the mortar element method. GAMM - Gesellschaft für Angewandte Mathematik und Mechanik 28 (2005) 97-123.
[12] and, The mortar method in the wavelet context. ESAIM: M2AN 35 (2001) 647-673. | Zbl | Numdam
[13] and, Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients. RAIRO Modél. Math. Anal. Numér. 31 (1997) 845-870. | Zbl | Numdam
[14] and, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | Zbl
[15] and, Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. Comput. Methods Appl. Mech. Engrg. 80 (1990) 91-115. | Zbl
[16] , An -estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa 17 (1963) 189-206. | Zbl | Numdam
[17] NAG Library Mark 21, The Numerical Algorithms Group Ltd, Oxford (2004).
Cité par Sources :






