Multiscale materials modelling : case studies at the atomistic and electronic structure levels
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 41 (2007) no. 2, p. 427-445

Although the intellectual merits of computational modelling across various length and time scales are generally well accepted, good illustrative examples are often lacking. One way to begin appreciating the benefits of the multiscale approach is to first gain experience in probing complex physical phenomena at one scale at a time. Here we discuss materials modelling at two characteristic scales separately, the atomistic level where interactions are specified through classical potentials and the electronic level where interactions are treated quantum mechanically. The former is generally sufficient for dealing with mechanical deformation at large strain, whereas the latter is necessary for treating chemical reactions or electronic transport. We will discuss simulations of defect nucleation using molecular dynamics, the study of water-silica reactions using a tight-binding approach, the design of a semiconductor-oxide interface using density functional theory, and the analysis of conjugated polymer in molecular actuation using Hartree-Fock calculations. The diversity of the problems discussed notwithstanding, our intent is to lay the groundwork for future problems in materials research, a few will be mentioned, where modelling at the electronic and atomistic scales are needed in an integrated fashion. It is in these problems that the full potential of multiscale modelling can be realized.

DOI : https://doi.org/10.1051/m2an:2007024
Keywords: multiscale modelling and simulation, fracture, molecular actuator, semiconductor interface
@article{M2AN_2007__41_2_427_0,
     author = {Silva, Emilio and F\"orst, Clemens and Li, Ju and Lin, Xi and Zhu, Ting and Yip, Sidney},
     title = {Multiscale materials modelling : case studies at the atomistic and electronic structure levels},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {2},
     year = {2007},
     pages = {427-445},
     doi = {10.1051/m2an:2007024},
     zbl = {1138.82312},
     mrnumber = {2339635},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2007__41_2_427_0}
}
Silva, Emilio; Först, Clemens; Li, Ju; Lin, Xi; Zhu, Ting; Yip, Sidney. Multiscale materials modelling : case studies at the atomistic and electronic structure levels. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 41 (2007) no. 2, pp. 427-445. doi : 10.1051/m2an:2007024. http://www.numdam.org/item/M2AN_2007__41_2_427_0/

[1] S.S. Alexandre, E. Artacho, J.M. Soler and H. Chacham, Small polarons in dry DNA. Phys. Rev. Lett. 91 (2003) 108105.

[2] C. Ashman, C. Först, K. Schwarz and P. Blöchl, First-principles calculations of strontium on Si(001). Phys. Rev. B 69 (2004) 075309.

[3] P.G. Bolhuis, D. Chandler, C. Dellago and P.L. Geissler, Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53 (2002) 291-318.

[4] M. Born, On the stability of crystal lattices. I. Proc. Cambridge Philos. Soc. 36 (1940) 160. | JFM 66.1180.02

[5] M. Born and K. Huang, Dynamical Theory of Crystal Lattices. Clarendon, Oxford (1956). | Zbl 0057.44601

[6] J.Q. Broughton, F.F. Abraham, N. Bernstein and E. Kaxiras, Concurrent coupling of length scales: Methodology and application. Phys. Rev. B 60 (1999) 2391-2403.

[7] M.J. Buehler, F.F. Abraham and H.J. Gao, Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426 (2003) 141-146.

[8] W. Cai, V.V. Bulatov, J. Chang, J. Li and S. Yip, Dislocation core effects on mobility, in Dislocations in Solids, Vol. 12, Chap. 64, F.R.N. Nabarro and J.P. Hirth Eds., Elsevier, Amsterdam (2004) 1-80.

[9] G.H. Campbell, S.M. Foiles, H.C. Huang, D.A. Hughes, W.E. King, D.H. Lassila, D.J. Nikkel, T.D. De La Rubia, J.Y. Shu and V.P. Smyshlyaev, Multi-scale modeling of polycrystal plasticity: A workshop report. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 251 (1998) 1-22.

[10] E. Clementi, Global scientific and engineering simulations on scalar, vector and parallel lcap-type supercomputers. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 326 (1988) 445-470. | Zbl 0649.76003

[11] T.D. De La Rubia and V.V. Bulatov, Materials research by means of multiscale computer simulation. Mrs Bull. 26 (2001) 169-175.

[12] W.E and B. Engquist, The heterogeneous multiscale methods. Comm. Math. Sci. 1 (2003) 87-132. | Zbl 1093.35012

[13] W.E and B. Engquist, Multiscale modeling and computation. Notices AMS 50 (2003) 1062-1070. | Zbl 1032.65013

[14] W.N. E, W.Q. Ren and E. Vanden-Eijnden, String method for the study of rare events. Phys. Rev. B 66 (2002) 052301.

[15] R.G. Endres, D.L. Cox and R.R. Singh, The quest for high-conductance DNA. Rev. Mod. Phys. 76 (2004) 195-214.

[16] C. Först, C. Ashman, K. Schwarz and P. Blöchl, The interface between silicon and a high-k oxide. Nature 427 (2004) 53.

[17] C. Först, K. Schwarz and P. Blöchl, Structural and electronic properties of the interface between the high-k oxide LaAlO 3 and Si(001). Phys. Rev. Lett. 95 (2005) 137602.

[18] M.J. Frisch et al. Gaussian 03. Gaussian, Inc. (2003).

[19] A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos and S. Suresh, Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48 (2000) 2277-2295.

[20] A.J. Heeger, S. Kivelson, J.R. Schrieffer and W.-P. Su, Solitons in conducting polymers. Rev. Mod. Phys. 60 (1988) 781-851.

[21] R. Hill, Acceleration waves in solids. J. Mech. Phys. Solids 10 (1962) 1-16. | Zbl 0111.37701

[22] International technology roadmap for semiconductors (2003). Available at http://public.itrs.net/

[23] H. Jonsson, G. Mills and K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, B.J. Berne, G. Ciccotti and D.F. Coker Eds., World Scientific (1998) 385-404.

[24] H. Jónsson, G. Mills and K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, Chap. 16, B.J. Berne, G. Ciccotti and D.F. Coker. Eds., World Scientific (1998) 385-404.

[25] E. Kaxiras and S. Yip, Modelling and simulation of solids - Editorial overview. Curr. Opin. Solid State Mat. Sci. 3 (1998) 523-525.

[26] A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard and W. Ketterle, Cooling bose-einstein condensates below 500 picokelvin. Science 301 (2003) 1513-1515.

[27] J. Li, K.J.V. Vliet, T. Zhu, S. Yip and S. Suresh, Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418 (2002) 307-310.

[28] J. Li, T. Zhu, S. Yip, K.J.V. Vliet and S. Suresh, Elastic criterion for dislocation nucleation. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 365 (2004) 25-30.

[29] M.J. Lii, X.F. Chen, Y. Katz and W.W. Gerberich, Dislocation modeling and acoustic-emission observation of alternating ductile/brittle events in Fe-3wt% Si crystals. Acta Metall. Mater. 38 (1990) 2435.

[30] X. Lin, J. Li and S. Yip, Controlling bending and twisting of conjugated polymers via solitons. Phys. Rev. Lett. 95 (2005) 198303.

[31] X. Lin, J. Li, E. Smela and S. Yip, Polaron-induced conformation change of a single polypyrrole chain: An intrinsic actuation mechanism. Int. J. Quant. Chem. 102 (2005) 980-985.

[32] X. Lin, J. Li, C. Foerst and S. Yip, Multiple self-localized electronic states in trans-polyacetylene. Proc. Natl. Acad. Sci. 103 (2006) 8943-8946.

[33] W.A. Little, Possibility of synthesizing an organic superconductor. Phys. Rev. 134 (1964) A1416-A1424.

[34] G. Lu and E. Kaxiras, Overview of multiscale simulation of materials, in Handbook of Theoretical and Computational Nanotechnology, Vol. X, M. Rieth and W. Schommers Eds., American Scientific Publ. (2005) 1-33.

[35] G. Lu, E.B. Tadmor and E. Kaxiras, From electrons to finite elements: A concurrent multiscale approach for metals. Phys. Rev. B 73 (2006) 024108.

[36] A.G. Macdiarmid, “Synthetic metals”: A novel role for organic polymers. Rev. Mod. Phys. 73 (2001) 701-712.

[37] R. Mckee, F. Walker and M. Chisholm, Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81 (1998) 3014.

[38] T.A. Michalske and S.W. Freiman, A molecular interpretation of stress-corrosion in silica. Nature 295 (1982) 511-512.

[39] Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter and J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding and embedded-atom calculations. Phys. Rev. B 6322 (2001) 224106.

[40] J.W. Morris and C.R. Krenn, The internal stability of an elastic solid. Philos. Mag. A 80 (2000) 2827-2840.

[41] S. Ogata, J. Li, N. Hirosaki, Y. Shibutani and S. Yip, Ideal shear strain of metals and ceramics. Phys. Rev. B 70 (2004) 104104.

[42] M. Ortiz and R. Phillips, Nanomechanics of defects in solids. Advan. Appl. Mech. 36 (1999) 1-79.

[43] R.E. Peierls, Quantum Theory of Solids. The International series of monographs on physics. Oxford University Press, New York (1955). | Zbl 0068.23207

[44] R. Phillips, Multiscale modeling in the mechanics of materials. Curr. Opin. Solid State Mat. Sci. 3 (1998) 526-532.

[45] J.R. Rice, in Theoretical and Applied Mechanics, Vol. 1., W.T. Koiter Ed., North-Holland, Amsterdam (1976) 207. | MR 429437 | Zbl 0342.00018

[46] S. Roth and D. Carroll, One-Dimensional Metals. Wiley-VCH, Weinheim, 2nd edn. (2004).

[47] R.E. Rudd and J.Q. Broughton, Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys. Rev. B 58 (1998) R5893-R5896.

[48] J.J.P. Stewart, MOPAC 2002 Manual. Fujitsu Ltd., Tokyo (2002).

[49] F.H. Stillinger and T.A. Weber, Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B 31 (1985) 5262-5271.

[50] W.P. Su, J.R. Schrieffer and A.J. Heeger, Solitons in polyacetylene. Phys. Rev. Lett. 42 (1979) 1698-1701.

[51] E.B. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids. Philos. Mag. A-Phys. Condens. Matter Struct. Defect Mech. Prop. 73 (1996) 1529-1563.

[52] K.J.V. Vliet, J. Li, T. Zhu, S. Yip and S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67 (2003) 104105.

[53] D.C. Wallace, Thermodynamics of Crystals. Wiley, New York (1972).

[54] J.H. Wang, J. Li, S. Yip, S. Phillpot and D. Wolf, Mechanical instabilities of homogeneous crystals. Phys. Rev. B 52 (1995) 12627-12635.

[55] J.H. Wang, J. Li, S. Yip, D. Wolf and S. Phillpot, Unifying two criteria of Born: Elastic instability and melting of homogeneous crystals. Physica A 240 (1997) 396-403.

[56] S.M. Wiederhorn, Fracture surface energy of glass. J. Am. Ceram. Soc. 52 (1969) 99-105.

[57] S. Yip Ed., Handbook of Materials Modeling. Springer, Dordrecht (2005).

[58] Y. Yu, M. Nakano and T. Ikeda, Directed bending of a polymer film by light. Nature 425 (2003) 145.

[59] Z. Zhou and B. Joos, Stability criteria for homogeneously stressed materials and the calculation of elastic constants. Phys. Rev. B 54 (1996) 3841-3850.

[60] T. Zhu, J. Li and S. Yip, Atomistic study of dislocation loop emission from a crack tip. Phys. Rev. Lett. 93 (2004) 025503.

[61] T. Zhu, J. Li and S. Yip, Atomistic configurations and energetics of crack extension in silicon. Phys. Rev. Lett. 93 (2004) 205504.