Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 41 (2007) no. 2, p. 315-331

We discuss the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of the time-dependent Schrödinger equation in quantum molecular dynamics. This method approximates the high-dimensional nuclear wave function by a linear combination of products of functions depending only on a single degree of freedom. The equations of motion, obtained via the Dirac-Frenkel time-dependent variational principle, consist of a coupled system of low-dimensional nonlinear partial differential equations and ordinary differential equations. We show that, with a smooth and bounded potential, the MCTDH equations are well-posed and retain high-order Sobolev regularity globally in time, that is, as long as the density matrices appearing in the method formulation remain invertible. In particular, the solutions are regular enough to ensure local quasi-optimality of the approximation and to admit an efficient numerical treatment.

DOI : https://doi.org/10.1051/m2an:2007020
Classification:  35F25,  58J90,  81V55
Keywords: MCTDH method, wavepacket propagation, nonlinear evolution equation, well-posedness, regularity
@article{M2AN_2007__41_2_315_0,
     author = {Koch, Othmar and Lubich, Christian},
     title = {Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {2},
     year = {2007},
     pages = {315-331},
     doi = {10.1051/m2an:2007020},
     zbl = {1135.81380},
     mrnumber = {2339631},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2007__41_2_315_0}
}
Koch, Othmar; Lubich, Christian. Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 41 (2007) no. 2, pp. 315-331. doi : 10.1051/m2an:2007020. http://www.numdam.org/item/M2AN_2007__41_2_315_0/

[1] H.W. Alt, Lineare Funktionalanalysis. Springer Verlag, Berlin-Heidelberg-New York, 3rd edition (1999). | MR 813701 | Zbl 0923.46001

[2] M. Baer and G.D. Billing Eds., The Role of Degenerate States in Chemistry, Advances in Chemical Physics 124, Wiley (2002).

[3] M.H. Beck and H.-D. Meyer, An efficient and robust integration scheme for the equations of the multiconfiguration time-dependent Hartree (MCTDH) method. Z. Phys. D 42 (1997) 113-129.

[4] M.H. Beck, A. Jäckle, G.A. Worth and H.-D. Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324 (2000) 1-105.

[5] A. Bove, G. Da Prato and G. Fano, An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction. Comm. Math. Phys. 37 (1974) 183-191. | Zbl 0303.34046

[6] A. Bove, G. Da Prato and G. Fano, On the Hartree-Fock time-dependent problem. Comm. Math. Phys. 49 (1976) 25-33.

[7] I. Burghardt, H.-D. Meyer and L.S. Cederbaum, Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method. J. Chem. Phys. 111 (1999) 2927-2939.

[8] J. Caillat, J. Zanghellini, M. Kitzler, W. Kreuzer, O. Koch and A. Scrinzi, Correlated multielectron systems in strong laser pulses - an MCTDHF approach. Phys. Rev. A 71 (2005) 012712.

[9] J.M. Chadam and R.T. Glassey, Global existence of solutions to the Cauchy problem for time-dependent Hartree equations. J. Math. Phys. 16 (1975) 1122-1130. | Zbl 0299.35084

[10] P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Proc. Cambridge Phil. Soc. 26 (1930) 376-385. | JFM 56.0751.04

[11] W. Domcke, D.R. Yarkony and H. Köppel Eds., Conical Intersections. Electronic Structure, Dynamics & Spectroscopy. World Scientific, Singapore, 2004.

[12] E. Faou and C. Lubich, A Poisson integrator for Gaussian wavepacket dynamics. Comput. Visual. Sci. 9 (2005) 45-55.

[13] J. Frenkel, Wave Mechanics, Advanced General Theory. Clarendon Press, Oxford (1934). | JFM 60.1429.09 | Zbl 0013.08702

[14] G. Friesecke, The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Ration. Mech. Anal. 169 (2003) 35-71. | Zbl 1035.81069

[15] O. Koch, W. Kreuzer and A. Scrinzi, Approximation of the time-dependent electronic Schrödinger equation by MCTDHF. Appl. Math. Comput. 173 (2006) 960-976. | Zbl 1088.65092

[16] M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry. Arch. Ration. Mech. Anal. 171 (2004) 83-114. | Zbl 1063.81102

[17] C. Lubich, A variational splitting integrator for quantum molecular dynamics. Appl. Numer. Math. 48 (2004) 355-368. | Zbl 1037.81634

[18] C. Lubich, On variational approximations in quantum molecular dynamics. Math. Comp. 74 (2005) 765-779. | Zbl 1059.81188

[19] A.D. Mclachlan, A variational solution of the time-dependent Schrödinger equation. Mol. Phys. 8 (1964) 39-44.

[20] H.-D. Meyer and G.A. Worth, Quantum molecular dynamics: propagating wavepackets and density operators using the multi-configuration time-dependent Hartree (MCTDH) method. Theo. Chem. Acc. 109 (2003) 251-267.

[21] H.-D. Meyer, U. Manthe and L.S. Cederbaum, The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165 (1990) 73-78.

[22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). | MR 710486 | Zbl 0516.47023

[23] A. Raab, G.A. Worth, H.-D. Meyer and L.S. Cederbaum, Molecular dynamics of pyrazine after excitation to the S 2 electronic state using a realistic 24-mode model Hamiltonian. J. Chem. Phys. 110 (1999) 936-946.

[24] D.J. Rowe, A. Ryman and G. Rosensteel, Many-body quantum mechanics as a symplectic dynamical system. Phys. Rev. A 22 (1980) 2362-2373.

[25] H. Wang and M. Thoss, Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 119 (2003) 1289-1299.