The Diffusion Monte Carlo method is devoted to the computation of electronic ground-state energies of molecules. In this paper, we focus on implementations of this method which consist in exploring the configuration space with a fixed number of random walkers evolving according to a stochastic differential equation discretized in time. We allow stochastic reconfigurations of the walkers to reduce the discrepancy between the weights that they carry. On a simple one-dimensional example, we prove the convergence of the method for a fixed number of reconfigurations when the number of walkers tends to while the timestep tends to . We confirm our theoretical rates of convergence by numerical experiments. Various resampling algorithms are investigated, both theoretically and numerically.
Keywords: diffusion Monte Carlo method, interacting particle systems, ground state, Schrödinger operator, Feynman-Kac formula
@article{M2AN_2007__41_2_189_0,
author = {Makrini, Mohamed El and Jourdain, Benjamin and Leli\`evre, Tony},
title = {Diffusion {Monte} {Carlo} method : numerical analysis in a simple case},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {189--213},
year = {2007},
publisher = {EDP Sciences},
volume = {41},
number = {2},
doi = {10.1051/m2an:2007017},
mrnumber = {2339625},
zbl = {1135.81379},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2007017/}
}
TY - JOUR AU - Makrini, Mohamed El AU - Jourdain, Benjamin AU - Lelièvre, Tony TI - Diffusion Monte Carlo method : numerical analysis in a simple case JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 189 EP - 213 VL - 41 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2007017/ DO - 10.1051/m2an:2007017 LA - en ID - M2AN_2007__41_2_189_0 ER -
%0 Journal Article %A Makrini, Mohamed El %A Jourdain, Benjamin %A Lelièvre, Tony %T Diffusion Monte Carlo method : numerical analysis in a simple case %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 189-213 %V 41 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2007017/ %R 10.1051/m2an:2007017 %G en %F M2AN_2007__41_2_189_0
Makrini, Mohamed El; Jourdain, Benjamin; Lelièvre, Tony. Diffusion Monte Carlo method : numerical analysis in a simple case. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Molecular Modelling, Tome 41 (2007) no. 2, pp. 189-213. doi: 10.1051/m2an:2007017
[1] , On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 (2005) 355-384. | Zbl
[2] , and, Diffusion Monte Carlo with a fixed number of walkers. Phys. Rev. E 61 (2000) 4566-4575.
[3] ,,, and, Computational Quantum Chemistry: a Primer, in Handbook of Numerical Analysis, Special volume, Computational Chemistry, volume X, Ph.G. Ciarlet and C. Le Bris Eds., North-Holland (2003) 3-270. | Zbl
[4] , and, Quantum Monte Carlo simulations of fermions. A mathematical analysis of the fixed-node approximation. Math. Mod. Methods Appl. Sci. 16 (2006) 1403-1440. | Zbl
[5] , and, Comparison of Resampling Schemes for Particle Filtering, in 4th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia (2005).
[6] , Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32 (2004) 2385-2411. | Zbl
[7] , Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer-Verlag (2004). | Zbl | MR
[8] and, Particle motions in absorbing medium with hard and soft obstacles. Stochastic Anal. Appl. 22 (2004) 1175-1207. | Zbl
[9] and, Branching and Interacting Particle Systems. Approximation of Feynman-Kac Formulae with Applications to Non-Linear Filtering, in Séminaire de Probabilités XXXIV, Lecture Notes in Mathematics 1729, Springer-Verlag (2000) 1-145. | Zbl | Numdam
[10] and, Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171-208. | Zbl | Numdam
[11] , Monte Carlo methods in financial engineering. Springer-Verlag (2004). | Zbl | MR
[12] , Observations on the statistical iteration of matrices. Phys. Rev. A 30 (1984) 2713-2719.
[13] ,, and, Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys. 77 (1982) 5593-5603.
[14] , On the control of an interacting particle approximation of Schrödinger groundstates. SIAM J. Math. Anal. 38 (2006) 824-844.
[15] , Green Function Monte Carlo with Stochastic Reconfiguration. Phys. Rev. Lett. 80 (1998) 4558-4561.
[16] and, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8 (1990) 94-120. | Zbl
[17] , and, A Diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 99 (1993) 2865-2890.
Cité par Sources :






