In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for the electron diffusion equation, we perform numerical simulations and show how Landau damping works quantitatively.
Keywords: Landau damping, Zakharov system
@article{M2AN_2006__40_6_961_0,
author = {Belaouar, R. and Colin, T. and Gallice, G. and Galusinski, C.},
title = {Theoretical and numerical study of a quasi-linear {Zakharov} system describing {Landau} damping},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {961--990},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {6},
doi = {10.1051/m2an:2007004},
mrnumber = {2297101},
zbl = {1112.76090},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2007004/}
}
TY - JOUR AU - Belaouar, R. AU - Colin, T. AU - Gallice, G. AU - Galusinski, C. TI - Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 961 EP - 990 VL - 40 IS - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2007004/ DO - 10.1051/m2an:2007004 LA - en ID - M2AN_2006__40_6_961_0 ER -
%0 Journal Article %A Belaouar, R. %A Colin, T. %A Gallice, G. %A Galusinski, C. %T Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 961-990 %V 40 %N 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2007004/ %R 10.1051/m2an:2007004 %G en %F M2AN_2006__40_6_961_0
Belaouar, R.; Colin, T.; Gallice, G.; Galusinski, C. Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 6, pp. 961-990. doi: 10.1051/m2an:2007004
[1] and, Equation of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation. J. Funct. Anal. 79 (1988) 183-210. | Zbl
[2] , On a nonlocal Zakharov equation. Nonlinear Anal. 25 (1995) 247-278. | Zbl
[3] and, On a quasilinear Zakharov System describing laser-plasma interactions. Diff. Int. Eqs. 17 (2004) 297-330.
[4] and, Instabilities in Zakharov Equations for Laser Propagation in a Plasma, Phase Space Analysis of PDEs, A. Bove, F. Colombini, and D. Del Santo, Eds., Progress in Nonlinear Differential Equations and Their Applications, Birkhauser (2006). | Zbl | MR
[5] and, Physique des plasmas 1, 2. Inter Editions-Editions du CNRS (1994).
[6] , and, On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151 (1997) 384-436. | Zbl
[7] and, Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I. Comm. Math. Phys. 160 (1994) 173-215. | Zbl
[8] and, Concentration properties of blow up solutions and instability results for Zakharov equation in dimension two. II. Comm. Math. Phys. 160 (1994) 349-389. | Zbl
[9] , Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension. Math. Comp. 58 (1992) 83-102. | Zbl
[10] , and, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math. 134 (1998) 489-545. | Zbl
[11] , and, On a degenerate Zakharov system. Bull. Braz. Math. Soc. New Series 36 (2005) 1-23. | Zbl
[12] and, Existence and smoothing effect of solution for the Zakharov equations. Publ. Res. Inst. Math. Sci. 28 (1992) 329-361. | Zbl
[13] , and, Numerical Solution of the Zakharov Equations. J. Compt. Phys. 50 (1983) 482-498. | Zbl
[14] . Étude théorique et numérique de l'influence du lissage optique sur la filamentation des faisceaux lasers dans les plasmas sous-critiques de fusion inertielle. Ph.D. thesis, University of Paris XI.
[15] , and. Nonlinear saturation of simulated Raman scattering in laser hot spots. Phys. Plasmas 6 (1999) 1294-1317.
[16] , Competition between Langmuir wave-wave and wave-particule interactions. Ph.D. thesis, University of Colorado, Department of Astrophysical (1997).
[17] and, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Comm. Math. Phys. 106 (1986) 569-580. | Zbl
[18] and, Quelques résultats de régularité pour les équations de la turbulence de Langmuir. C. R. Acad. Sci. Paris Sér. A-B 289 (1979) 173-176. | Zbl
[19] and, The nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Appl. Math. Sci. 139, Springer (1999). | Zbl | MR
[20] , Derivation of the Zakharov equations. Arch. Rat. Mech. Anal. (to appear). | MR
[21] , and, Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Reports 129 (1985) 285-366.
Cité par Sources :






