In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in -norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.
Keywords: finite volume element, second-order, quadrilateral meshes, error estimates
@article{M2AN_2006__40_6_1053_0,
author = {Yang, Min},
title = {A second-order finite volume element method on quadrilateral meshes for elliptic equations},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1053--1067},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {6},
doi = {10.1051/m2an:2007002},
mrnumber = {2297104},
zbl = {1141.65081},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2007002/}
}
TY - JOUR AU - Yang, Min TI - A second-order finite volume element method on quadrilateral meshes for elliptic equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 1053 EP - 1067 VL - 40 IS - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2007002/ DO - 10.1051/m2an:2007002 LA - en ID - M2AN_2006__40_6_1053_0 ER -
%0 Journal Article %A Yang, Min %T A second-order finite volume element method on quadrilateral meshes for elliptic equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 1053-1067 %V 40 %N 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2007002/ %R 10.1051/m2an:2007002 %G en %F M2AN_2006__40_6_1053_0
Yang, Min. A second-order finite volume element method on quadrilateral meshes for elliptic equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 6, pp. 1053-1067. doi: 10.1051/m2an:2007002
[1] and, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. | Zbl
[2] , and, A Petrov-Galerkin method with quadrature for elliptic boundary value problems. IMA J. Numer. Anal. 24 (2004) 157-177. | Zbl
[3] , On the finite volume element method. Numer. Math. 58 (1991) 713-735. | Zbl
[4] , and, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | Zbl
[5] and, On the regularity and uniformness conditions on quadrilateral grids. Comput. Methods Appl. Mech. Engrg., 191 (2002) 5149-5158. | Zbl
[6] , and, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems. Math. Comp. 72 (2002) 525-539. | Zbl
[7] , and, error estimates and superconvergence for covolume or finite volume element methods. Num. Meth. P. D. E. 19 (2003) 463-486. | Zbl
[8] , The finite element methods for elliptic problems. North-Holland, Amsterdam, New York, Oxford (1980). | Zbl
[9] , and, Finite volume element approximations of nonlocal reactive flows in porous media. Num. Meth. P. D. E. 16 (2000) 285-311. | Zbl
[10] , and, On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2001) 1865-1888. | Zbl
[11] , On first and second order box schemes. Computing 41 (1989) 277-296. | Zbl
[12] , and, Direct solution of partitial difference equations by tensor product methods. Numer. Math. 6 (1964) 185-199. | Zbl
[13] and, Generalized difference methods on arbitrary quadrilateral networks. J. Comput. Math. 17 (1999) 653-672. | Zbl
[14] , and, Generalized difference methods for differential equations, Numerical analysis of finite volume methods. Marcel Dekker, New York (2000). | Zbl | MR
[15] , The finite volume element method with quadratic basis functions. Computing 57 (1996) 281-299. | Zbl
[16] , Finite volume element methods for non-definite problems. Numer. Math. 83 (1999) 161-175. | Zbl
[17] , Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. | Zbl
[18] , The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. Comp. 59 (1992) 359-382. | Zbl
[19] and, Generalized difference methods for second order elliptic partial differential equations. Numer. Math. J. Chinese Universities 13 (1991) 99-113. | Zbl
[20] , Spectral (finite) volume methods for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178 (2002) 210-251. | Zbl
[21] , and, Spectral (finite) volume method for conservation laws on unstructured grids. IV: Extension to two-dimensional systems. J. Comput. Phys. 194 (2004) 716-741. | Zbl
[22] , Generalized difference methods for second order elliptic equations. Numer. Math. J. Chinese Universities 2 (1983) 114-126. | Zbl
[23] and, A multistep finite volume element scheme along characteristics for nonlinear convection diffusion problems. Math. Numer. Sinica 24 (2004) 487-500.
Cité par Sources :





