Periodic solutions for nonlinear elliptic equations. Application to charged particle beam focusing systems
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 40 (2006) no. 6, p. 1023-1052

We study the existence of spatial periodic solutions for nonlinear elliptic equations -Δu+g(x,u(x))=0,x N where g is a continuous function, nondecreasing w.r.t. u. We give necessary and sufficient conditions for the existence of periodic solutions. Some cases with nonincreasing functions g are investigated as well. As an application we analyze the mathematical model of electron beam focusing system and we prove the existence of positive periodic solutions for the envelope equation. We present also numerical simulations.

DOI : https://doi.org/10.1051/m2an:2006039
Classification:  35A05,  35B35
Keywords: nonlinear elliptic equations, periodic solutions, existence and uniqueness, electron beam focusing system
@article{M2AN_2006__40_6_1023_0,
     author = {Bostan, Mihai and Sonnendr\"ucker, Eric},
     title = {Periodic solutions for nonlinear elliptic equations. Application to charged particle beam focusing systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {6},
     year = {2006},
     pages = {1023-1052},
     doi = {10.1051/m2an:2006039},
     zbl = {1133.78307},
     mrnumber = {2297103},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2006__40_6_1023_0}
}
Bostan, Mihai; Sonnendrücker, Eric. Periodic solutions for nonlinear elliptic equations. Application to charged particle beam focusing systems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 40 (2006) no. 6, pp. 1023-1052. doi : 10.1051/m2an:2006039. http://www.numdam.org/item/M2AN_2006__40_6_1023_0/

[1] M. Bostan, Solutions périodiques des équations d'évolution. C. R. Acad. Sci., Ser. I, Math. 332 (2001) 401-404. | Zbl 1047.34065

[2] M. Bostan, Periodic solutions for evolution equations. Electron. J. Diff. Eqns., Monograph 3 (2002) 41. | MR 1937154 | Zbl 1010.34060

[3] H. Brezis, Problèmes unilatéraux. J. Math. Pures Appl. 51 (1972) 1-64. | Zbl 0237.35001

[4] R.C. Davidson and H. Qin, Physics of charged particle beams in high energy accelerators. Imperial College Press, World Scientific Singapore (2001).

[5] P. Degond and P.-A. Raviart, On the paraxial approximation of the stationary Vlasov-Maxwell system, Math. Models Meth. Appl. Sci. 3 (1993) 513-562. | Zbl 0787.35110

[6] F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation. Research report INRIA, No. 5547 (2004). | Zbl 1109.78013

[7] I.M. Kapchinsky and V.V. Vladimirsky, Proceedings of the 9th international conference on high energy accelerators, CERN Geneva (1959) 274.

[8] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Academic Press, New York, London (1980). | MR 567696 | Zbl 0457.35001

[9] G. Laval, S. Mas-Gallic and P.-A. Raviart, Paraxial approximation of ultra-relativistic intense beams. Numer. Math. 1 (1994) 33-60. | Zbl 0816.65119

[10] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod Gauthier-Villars (1969). | MR 259693 | Zbl 0189.40603

[11] Z. Meiyue, C. Taiyoung, L. Wenbin and J. Yong, Existence of positive periodic solution for the electron beam focusing system. Math. Meth. Appl. Sci. 28 (2005) 779-788. | Zbl 1069.34065

[12] A. Nouri, Paraxial approximation of the Vlasov-Maxwell system: laminar beams. Math. Models Meth. Appl. Sci. 4 (1994) 203-221. | Zbl 0803.35148

[13] P.-A. Raviart, Paraxial approximation of the stationary Vlasov-Maxwell equations, Nonlinear partial differential equations and their applications. Collège de France Seminar, vol. XIII Paris (1991-1993), Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow 302 (1994) 158-171. | Zbl 0823.35149

[14] M. Reiser, Theory and design of charged-particle beams. Wiley, New York (1994).