A simplified stochastic Hookean dumbbells model arising from viscoelastic flows is considered, the convective terms being disregarded. A finite element discretization in space is proposed. Existence of the numerical solution is proved for small data, so as a priori error estimates, using an implicit function theorem and regularity results obtained in [Bonito et al., J. Evol. Equ. 6 (2006) 381-398] for the solution of the continuous problem. A posteriori error estimates are also derived. Numerical results with small time steps and a large number of realizations confirm the convergence rate with respect to the mesh size.
Keywords: viscoelastic, hookean dumbbells, finite elements, stochastic differential equations
@article{M2AN_2006__40_4_785_0,
author = {Bonito, Andrea and Cl\'ement, Philippe and Picasso, Marco},
title = {Finite element analysis of a simplified stochastic hookean dumbbells model arising from viscoelastic flows},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {785--814},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {4},
doi = {10.1051/m2an:2006030},
mrnumber = {2274778},
zbl = {1133.76332},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2006030/}
}
TY - JOUR AU - Bonito, Andrea AU - Clément, Philippe AU - Picasso, Marco TI - Finite element analysis of a simplified stochastic hookean dumbbells model arising from viscoelastic flows JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 785 EP - 814 VL - 40 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2006030/ DO - 10.1051/m2an:2006030 LA - en ID - M2AN_2006__40_4_785_0 ER -
%0 Journal Article %A Bonito, Andrea %A Clément, Philippe %A Picasso, Marco %T Finite element analysis of a simplified stochastic hookean dumbbells model arising from viscoelastic flows %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 785-814 %V 40 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2006030/ %R 10.1051/m2an:2006030 %G en %F M2AN_2006__40_4_785_0
Bonito, Andrea; Clément, Philippe; Picasso, Marco. Finite element analysis of a simplified stochastic hookean dumbbells model arising from viscoelastic flows. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 4, pp. 785-814. doi: 10.1051/m2an:2006030
[1] and, A comparison of FENE and FENE-P dumbbell and chain models in turbulent flow. J. Non-Newton. Fluid 109 (2003) 115-155. | Zbl
[2] and, Strong steady solutions for a generalized Oldroyd-B model with shear-dependent viscosity in a bounded domain. Math. Mod. Meth. Appl. S. 13 (2003) 1303-1323. | Zbl
[3] , Mixed finite element methods for viscoelastic flow analysis: a review. J. Non-Newton. Fluid 79 (1998) 361-385. | Zbl
[4] , and, Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements. SIAM J. Numer. Anal. 29 (1992) 947-964. | Zbl
[5] and, Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens. RAIRO Modél. Math. Anal. Numér. 25 (1991) 931-947. | Numdam | Zbl | EuDML
[6] and, Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. I. Discontinuous constraints. Numer. Math. 63 (1992) 13-27. | Zbl | EuDML
[7] and, Numerical analysis of a FEM for a transient viscoelastic flow. Comput. Method. Appl. M. 125 (1995) 171-185. | Zbl
[8] , and, Existence of global weak solutions for some polymeric flow models. Math. Mod. Meth. Appl. S. 15 (2005) 939-983. | Zbl
[9] ,, and, Dynamics of polymeric liquids, Vol. 1 and 2. John Wiley & Sons, New York, 1987.
[10] , and, Mathematical and numerical analysis of a simplified time-dependent viscoelastic flow. Numer. Math. (submitted). | MR
[11] , and, Mathematical analysis of a simplified Hookean dumbbells model arising from viscoelastic flows. J. Evol. Equ. 6 (2006) 381-398. | Zbl
[12] , and, Numerical simulation of 3d viscoelastic flows with complex free surfaces. J. Comput. Phys. 215 (2006) 691-716.
[13] and, Variance reduction methods for connffessit-like simulations. J. Non-Newton. Fluid 84 (1999) 191-215. | Zbl
[14] and, A finite element/Monte-Carlo method for polymer dilute solutions. Comput. Vis. Sci. 4 (2001) 93-98. Second AMIF International Conference (Il Ciocco, 2000). | Zbl
[15] , and, GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows. Comput. Method. Appl. M. 190 (2001) 3893-3914. | Zbl
[16] , and, Simulation of viscoelastic flows using Brownian configuration fields. J. Non-Newton. Fluid 70 (1997) 79-101.
[17] , and, On the selection of parameters in the FENE-P model. J. Non-Newton. Fluid 75 (1998) 253-271. | Zbl
[18] , and, Brownian configuration fields and variance reduced connffessit. J. Non-Newton. Fluid 70 (1997) 255-261.
[19] and, Analytic theory of global bifurcation. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, (2003). | Zbl | MR
[20] and, Numerical analysis for nonlinear and bifurcation problems, in Handbook of numerical analysis, Vol. V, North-Holland, Amsterdam (1997) 487-637.
[21] and, A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations: 2D FENE model. J. Comput. Phys. 189 (2003) 607-625. | Zbl
[22] and, editors, Handbook of numerical analysis. Vol. II. North-Holland, Amsterdam, (1991). Finite element methods. Part 1. | Zbl | MR
[23] , Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Zbl | Numdam
[24] and, Stochastic equations in infinite dimensions, Vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992). | Zbl | MR
[25] W. E, T. Li and P. Zhang, Convergence of a stochastic method for the modeling of polymeric fluids. Acta Math. Sin. 18 (2002) 529-536. | Zbl
[26] W. E, T. Li and P. Zhang, Well-posedness for the dumbbell model of polymeric fluids. Comm. Math. Phys. 248 (2004) 409-427. | Zbl
[27] and, Approximation of time-dependent, viscoelastic fluid flow: Crank-Nicolson, finite element approximation. Numer. Methods Partial Differ. Equ. 20 (2004) 248-283. | Zbl
[28] and, Approximation of time-dependent viscoelastic fluid flow: SUPG approximation. SIAM J. Numer. Anal. 41 (2003) 457-486 (electronic). | Zbl
[29] , Molecular models and flow calculation: I. the numerical solutions to multibead-rod models in inhomogeneous flows. Acta Mech. Sin. 5 (1989) 49-59.
[30] , Molecular models and flow calculation: II. simulation of steady planar flow. Acta Mech. Sin. 5 (1989) 216-226.
[31] and, A new mixed finite element method for viscoelastic fluid flows. Int. J. Pure Appl. Math. 7 (2003) 93-115. | Zbl
[32] , and, Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind, in Handbook of numerical analysis, Vol. VIII, North-Holland, Amsterdam (2002) 543-661. | Zbl
[33] , and, On the discrete EVSS method. Comput. Method. Appl. M. 189 (2000) 121-139. | Zbl
[34] and, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Method. Appl. M. 73 (1989) 341-350. | Zbl
[35] , Analyticity of the semigroup generated by the Stokes operator in spaces. Math. Z. 178 (1981) 297-329. | Zbl
[36] , and, Calculation of variable-topology free surface flows using CONNFFESSIT. J. Non-Newton. Fluid 113 (2003) 127-145. | Zbl
[37] and, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal-theor. 15 (1990) 849-869. | Zbl
[38] , and, Numerical analysis of micro-macro simulations of polymeric fluid flows: a simple case. Math. Mod. Meth. Appl. S. 12 (2002) 1205-1243. | Zbl
[39] , and, On a variance reduction technique for micro-macro simulations of polymeric fluids. J. Non-Newton. Fluid 122 (2004) 91-106. | Zbl
[40] , and, Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209 (2004) 162-193. | Zbl
[41] ,, and, Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. An. 181 (2006) 97-148. | Zbl
[42] and, Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York (1991). | Zbl | MR
[43] , On the Peterlin approximation for finitely extensible dumbbells. J. Non-Newton. Fluid 68 (1997) 85-100.
[44] , Micro-marco methods for the multi-scale simulation of viscoelastic flow using molecular models of kinetic theory, in Rheology Reviews, D.M. Binding, K. Walters (Eds.), British Society of Rheology (2004) 67-98.
[45] , and, Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comp. 67 (1998) 45-71. | Zbl
[46] and, Calculation of viscoelastic flow using molecular models: the connffessit approach. J. Non-Newton. Fluid 47 (1993) 1-20. | Zbl
[47] , and, 2-d time-dependent viscoelastic flow calculations using connffessit. AICHE Journal 43 (1997) 877-892.
[48] and, Renormalized solutions of some transport equations with partially velocities and applications. Ann. Mat. Pur. Appl. 183 (2004) 97-130.
[49] , Optimal error estimate for the CONNFFESSIT approach in a simple case. Comput. Fluids 33 (2004) 815-820. | Zbl
[50] and, Convergence analysis of BCF method for Hookean dumbbell model with finite difference scheme. Multiscale Model. Simul. 5 (2006) 205-234.
[51] , and, Local existence for the dumbbell model of polymeric fluids. Comm. Partial Diff. Eq. 29 (2004) 903-923. | Zbl
[52] and, Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann. Math. Ser. B 21 (2000) 131-146. | Zbl
[53] and, An energy estimate for the Oldroyd B model: theory and applications. J. Non-Newton. Fluid 112 (2003) 161-176. | Zbl
[54] , Analytic semigroups and optimal regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications, 16 Birkhäuser Verlag, Basel (1995). | Zbl | MR
[55] and, Finite element approximation of viscoelastic fluid flow using characteristics method. Comput. Method. Appl. M. 190 (2001) 5603-5618. | Zbl
[56] and, On a decoupled algorithm for solving a finite element problem for the approximation of viscoelastic fluid flow. Numer. Math. 72 (1995) 223-238. | Zbl
[57] , Stochastic processes in polymeric fluids. Springer-Verlag, Berlin (1996). | Zbl | MR
[58] and, Computational rheology. Imperial College Press, London (2002). | Zbl | MR
[59] and, Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows. ESAIM: M2AN 35 (2001) 879-897. | Zbl | Numdam
[60] and, Numerical Approximation of Partial Differential Equations. Number 23 in Springer Series in Computational Mathematics. Springer-Verlag (1991). | Zbl | MR
[61] , Existence of slow steady flows of viscoelastic fluids of integral type. Z. Angew. Math. Mech. 68 (1988) T40-T44. | Zbl
[62] , An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22 (1991) 313-327. | Zbl
[63] and, Continuous martingales and Brownian motion, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 293 Springer-Verlag, Berlin (1994). | Zbl | MR
[64] , Analyse d'une formulation à trois champs du problème de Stokes. RAIRO Modél. Math. Anal. Numér. 27 (1993) 817-841. | Zbl | Numdam
[65] , Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. Continuous approximation of the stress. SIAM J. Numer. Anal. 31 (1994) 362-377. | Zbl
[66] , Coerciveness inequalities for abstract parabolic equations. Dokl. Akad. Nauk SSSR 157 (1964) 52-55. | Zbl
[67] , A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989) 309-325. | Zbl
[68] and, Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004) 93-127. | Zbl | Numdam
[69] and, Local existence for the FENE-Dumbbells model of polymeric liquids. Arch. Ration. Mech. An. 181 (2006) 373-400. | Zbl
Cité par Sources :






