In this work we design a new domain decomposition method for the Euler equations in dimensions. The starting point is the equivalence with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation [Achdou and Nataf, C. R. Acad. Sci. Paris Sér. I 325 (1997) 1211-1216]. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into sub-domains, it converges in iterations. This property cannot be conserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem (mesh size, Mach number, ).
Keywords: Smith factorization, domain decomposition method, Euler equations
@article{M2AN_2006__40_4_689_0,
author = {Dolean, Victorita and Nataf, Fr\'ed\'eric},
title = {A new domain decomposition method for the compressible {Euler} equations},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {689--703},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {4},
doi = {10.1051/m2an:2006026},
mrnumber = {2274774},
zbl = {1173.76381},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2006026/}
}
TY - JOUR AU - Dolean, Victorita AU - Nataf, Frédéric TI - A new domain decomposition method for the compressible Euler equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 689 EP - 703 VL - 40 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2006026/ DO - 10.1051/m2an:2006026 LA - en ID - M2AN_2006__40_4_689_0 ER -
%0 Journal Article %A Dolean, Victorita %A Nataf, Frédéric %T A new domain decomposition method for the compressible Euler equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 689-703 %V 40 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2006026/ %R 10.1051/m2an:2006026 %G en %F M2AN_2006__40_4_689_0
Dolean, Victorita; Nataf, Frédéric. A new domain decomposition method for the compressible Euler equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 4, pp. 689-703. doi: 10.1051/m2an:2006026
[1] and, A Robin-Robin preconditioner for an advection-diffusion problem. C. R. Acad. Sci. Paris Sér. I 325 (1997) 1211-1216. | Zbl
[2] ,, and, A domain decomposition preconditioner for an advection-diffusion problem. Comput. Methods Appl. Mech. Engrg. 184 (2000) 145-170. | Zbl
[3] and, A domain decomposition method for the Helmholtz equation and related optimal control. J. Comp. Phys. 136 (1997) 68-82. | Zbl
[4] , A note on the convergence of discretized dynamic iteration. BIT 35 (1995) 291-296. | Zbl
[5] ,, and, Variational formulation and algorithm for trace operator in domain decomposition calculations, in Domain Decomposition Methods, T. Chan, R. Glowinski, J. Périaux and O. Widlund Eds., Philadelphia, PA, SIAM (1989) 3-16. | Zbl
[6] , and, A minimum overlap restricted additive Schwarz preconditioner and appication in 3D flow simulations, in Proceedings of the 10th Domain Decomposition Methods in Sciences and Engineering, C. Farhat J. Mandel and X.-C. Cai Eds., Contemporary Mathematics, AMS 218 (1998) 479-485. | Zbl
[7] and, Symmetrized method with optimized second-order conditions for the Helmholtz equation, in Domain Decomposition Methods, 10 (Boulder, CO, 1997). Amer. Math. Soc., Providence, RI (1998) 400-407. | Zbl
[8] , Non-overlapping Schwarz method for systems of first order equations. Cont. Math. 218 (1998) 408-416. | Zbl
[9] and, An optimized Schwarz algorithm for the compressible Euler equations. Technical Report 556, CMAP, École Polytechnique (2004).
[10] , and, Construction of interface conditions for solving compressible Euler equations by non-overlapping domain decomposition methods. Int. J. Numer. Meth. Fluids 40 (2002) 1485-1492. | Zbl
[11] , and, Convergence analysis of a Schwarz type domain decomposition method for the solution of the Euler equations. Appl. Num. Math. 49 (2004) 153-186.
[12] and, Absorbing boundary conditions for domain decomposition. Appl. Numer. Math. 27 (1998) 341-365. | Zbl
[13] and, Méthodes de relaxation d'ondes pour l'équation de la chaleur en dimension 1. C.R. Acad. Sci. Paris, Sér. I 336 (2003) 519-524. | Zbl
[14] , and, Optimal Schwarz waveform relaxation for the one dimensional wave equation. Technical Report 469, CMAP, École Polytechnique (2001). | Zbl
[15] , and, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24 (2002) 38-60. | Zbl
[16] , Théorie des matrices. Tome 1: Théorie générale. Traduit du Russe par C. Sarthou. Collection Universitaire de Mathématiques, No. 18. Dunod, Paris (1966). | Zbl | MR
[17] , Théorie des matrices. Tome 2: Questions spéciales et applications. Traduit du Russe par C. Sarthou. Collection Universitaire de Mathématiques, No. 19. Dunod, Paris (1966). | Zbl | MR
[18] , Theorie des matrices. Dunod (1966). | Zbl
[19] , The theory of matrices. Vol. 1. AMS Chelsea Publishing, Providence, RI (1998). Translated from the Russian by K.A. Hirsch, Reprint of the 1959 translation. | Zbl | MR
[20] , and, A Robin-Robin preconditioner for advection-diffusion equations with discontinuous coefficients. Comput. Methods Appl. Mech. Engrg. 193 (2004) 745-764. | Zbl
[21] ,,, and, Eds. Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA, SIAM (1991). | Zbl | MR
[22] , and, The optimized order 2 method. Application to convection-diffusion problems. Future Generation Computer Systems FUTURE 18 (2001). | Zbl
[23] , and, A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays. J. Comput. Phys. 203 (2005) 1-21. | Zbl
[24] , A Dual-Primal FETI method for incompressible Stokes equations. Numer. Math. 102 (2005) 257-275.
[25] and, BDDC algorithms for incompressible Stokes equations. Technical report (2006) (submitted). | MR
[26] , On the Schwarz alternating method. III: a variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20-22, 1989, T.F. Chan, R. Glowinski, J. Périaux and O. Widlund, Eds., Philadelphia, PA, SIAM (1990). | Zbl
[27] , Balancing domain decomposition. Commun. Appl. Numer. M. 9 (1992) 233-241. | Zbl
[28] , Domain decomposition methods for systems of conservation laws: spectral collocation approximation. SIAM J. Sci. Stat. Comput. 11 (1990) 1029-1052. | Zbl
[29] and, Homogeneous and heterogeneous domain decomposition methods for compressible flow at high reynolds numbers. Technical Report 33, CRS4 (1996). | Zbl
[30] and, Analysis and Test of a Local Domain Decomposition Preconditioner, in R. Glowinski et al. [21] (1991). | Zbl
[31] and, Domain Decomposition Methods - Algorithms and Theory. Springer Series in Computational Mathematics. Springer Verlag (2004). | Zbl
[32] , and, Boundary value problems for elliptic systems. Cambridge University Press, Cambridge (1995). | Zbl | MR
Cité par Sources :






