Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) no. 2, pp. 367-391.

We consider the lowest-order Raviart-Thomas mixed finite element method for second-order elliptic problems on simplicial meshes in two and three space dimensions. This method produces saddle-point problems for scalar and flux unknowns. We show how to easily and locally eliminate the flux unknowns, which implies the equivalence between this method and a particular multi-point finite volume scheme, without any approximate numerical integration. The matrix of the final linear system is sparse, positive definite for a large class of problems, but in general nonsymmetric. We next show that these ideas also apply to mixed and upwind-mixed finite element discretizations of nonlinear parabolic convection-diffusion-reaction problems. Besides the theoretical relationship between the two methods, the results allow for important computational savings in the mixed finite element method, which we finally illustrate on a set of numerical experiments.

DOI : https://doi.org/10.1051/m2an:2006013
Classification : 76M10,  76M12,  76S05
Mots clés : mixed finite element method, saddle-point problem, finite volume method, second-order elliptic equation, nonlinear parabolic convection-diffusion-reaction equation
@article{M2AN_2006__40_2_367_0,
author = {Vohral\'\i k, Martin},
title = {Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
pages = {367--391},
publisher = {EDP-Sciences},
volume = {40},
number = {2},
year = {2006},
doi = {10.1051/m2an:2006013},
zbl = {1116.65121},
mrnumber = {2241828},
language = {en},
url = {http://www.numdam.org/item/M2AN_2006__40_2_367_0/}
}
Vohralík, Martin. Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) no. 2, pp. 367-391. doi : 10.1051/m2an:2006013. http://www.numdam.org/item/M2AN_2006__40_2_367_0/

 I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 1700-1716. | Zbl 0951.65080

 I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results. SIAM J. Sci. Comput. 19 (1998) 1717-1736. | Zbl 0951.65082

 M. Aftosmis, D. Gaitonde and T. Sean Tavares, On the accuracy, stability and monotonicity of various reconstruction algorithms for unstructured meshes. AIAA (1994), paper No. 94-0415.

 A. Agouzal, J. Baranger, J.-F. Maître and F. Oudin, Connection between finite volume and mixed finite element methods for a diffusion problem with nonconstant coefficients. Application to a convection diffusion problem. East-West J. Numer. Math. 3 (1995) 237-254. | Zbl 0839.65116

 T. Arbogast, M.F. Wheeler and N. Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33 (1996) 1669-1687. | Zbl 0856.76033

 T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34 (1997) 828-852. | Zbl 0880.65084

 T. Arbogast, C.N. Dawson, P.T. Keenan, M.F. Wheeler and I. Yotov, Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J. Sci. Comput. 19 (1998) 404-425. | Zbl 0947.65114

 D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32. | Numdam | Zbl 0567.65078

 J. Baranger, J.-F. Maître and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. | Numdam | Zbl 0857.65116

 F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002

 F. Brezzi, J. Douglas Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217-235. | Zbl 0599.65072

 F. Brezzi, J. Douglas Jr., R. Duran and M. Fortin, Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51 (1987) 237-250. | Zbl 0631.65107

 G. Chavent, A. Younès and Ph. Ackerer, On the finite volume reformulation of the mixed finite element method for elliptic and parabolic PDE on triangles. Comput. Methods Appl. Mech. Engrg. 192 (2003) 655-682. | Zbl 1091.76520

 Z. Chen, Equivalence between and multigrid algorithms for nonconforming and mixed methods for second-order elliptic problems. East-West J. Numer. Math. 4 (1996) 1-33. | Zbl 0932.65126

 Y. Coudière, J.-P. Vila and Villedieu Ph., Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493-516. | Numdam | Zbl 0937.65116

 C. Dawson, Analysis of an upwind-mixed finite element method for nonlinear contaminnat transport equations. SIAM J. Numer. Anal. 35 (1998) 1709-1724. | Zbl 0954.76043

 C. Dawson and V. Aizinger, Upwind-mixed methods for transport equations. Comput. Geosci. 3 (1999) 93-110. | Zbl 0962.65084

 J. Douglas Jr. and J.E. Roberts, Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44 (1985) 39-52. | Zbl 0624.65109

 R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, Ph.G. Ciarlet and J.-L. Lions Eds. Elsevier Science B.V., Amsterdam 7 (2000) 713-1020. | Zbl 0981.65095

 R. Eymard, T. Gallouët and R. Herbin, A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26 (2006) 326-353. | Zbl 1093.65110

 I. Faille, A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Engrg. 100 (1992) 275-290. | Zbl 0761.76068

 J.R. Gilbert, C. Moler and R. Schreiber, Sparse matrices in MATLAB: Design and implementation. SIAM J. Matrix Anal. Appl. 13 (1992) 333-356. | Zbl 0752.65037

 M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49 (1952) 409-436. | Zbl 0048.09901

 H. Hoteit, J. Erhel, R. Mosé, B. Philippe and Ph. Ackerer, Numerical reliability for mixed methods applied to flow problems in porous media. Comput. Geosci. 6 (2002) 161-194. | Zbl 1079.76581

 J. Jaffré, Éléments finis mixtes et décentrage pour les équations de diffusion-convection. Calcolo 23 (1984) 171-197. | Zbl 0562.65077

 L. Jeannin, I. Faille and T. Gallouët, Comment modéliser les écoulements diphasiques compressibles sur des grilles hybrides ? Oil & Gas Science and Technology - Rev. IFP 55 (2000) 269-279.

 R.A. Klausen and G.T. Eigestad, Multi point flux approximations and finite element methods; practical aspects of discontinuous media, Proc. 9th European Conference on the Mathematics of Oil Recovery, Cannes, France, B003 (2004).

 R.A. Klausen and T.F. Russell, Relationships among some locally conservative discretization methods which handle discontinuous coefficients. Comput. Geosci. 8 (2004) 341-377. | Zbl 1124.76030

 L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985) 493-496. | Zbl 0573.65082

 J.C. Nédélec, Mixed finite elements in ${ℝ}^{3}$. Numer. Math. 35 (1980) 315-341. | Zbl 0419.65069

 A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin (1994). | MR 1299729 | Zbl 0803.65088

 P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methods. Galligani I., Magenes E. Eds., Lect. Notes Math., Springer, Berlin 606 (1977) 292-315. | Zbl 0362.65089

 J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, Ph.G. Ciarlet and J.-L. Lions Eds., Elsevier Science B.V., Amsterdam 2 (1991) 523-639. | Zbl 0875.65090

 T.F. Russell and M.F. Wheeler, Finite element and finite difference methods for continuous flows in porous media, in The Mathematics of Reservoir Simulation, R.E. Ewing Ed., SIAM, Philadelphia (1983) 35-106. | Zbl 0572.76089

 Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing Company (1996). | Zbl 1031.65047

 H.A. Van Der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (1992) 631-644. | Zbl 0761.65023

 M. Vohralík, Equivalence between mixed finite element and multi-point finite volume methods. C. R. Acad. Sci. Paris., Ser. I 339 (2004) 525-528. | Zbl 1058.65132

 M. Vohralík, Equivalence between mixed finite element and multi-point finite volume methods. Derivation, properties, and numerical experiments, in Proceedings of ALGORITMY 2005, Slovak University of Technology, Slovakia (2005) 103-112.

 A. Younès, R. Mose, Ph. Ackerer and G. Chavent, A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J. Comput. Phys. 149 (1999) 148-167. | Zbl 0923.65064

 A. Younès, Ph. Ackerer and G. Chavent, From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions. Internat. J. Numer. Methods Engrg. 59 (2004) 365-388. | Zbl 1043.65131