The fourth order accuracy decomposition scheme for an evolution problem
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 38 (2004) no. 4, p. 707-722

In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit a priori estimate is obtained.

DOI : https://doi.org/10.1051/m2an:2004031
Classification:  65M12,  65M15,  65M55
Keywords: decomposition method, semigroup, operator split method, Trotter formula, Cauchy abstract problem
@article{M2AN_2004__38_4_707_0,
     author = {Gegechkori, Zurab and Rogava, Jemal and Tsiklauri, Mikheil},
     title = {The fourth order accuracy decomposition scheme for an evolution problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {4},
     year = {2004},
     pages = {707-722},
     doi = {10.1051/m2an:2004031},
     zbl = {1077.65101},
     mrnumber = {2087731},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2004__38_4_707_0}
}
Gegechkori, Zurab; Rogava, Jemal; Tsiklauri, Mikheil. The fourth order accuracy decomposition scheme for an evolution problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 38 (2004) no. 4, pp. 707-722. doi : 10.1051/m2an:2004031. http://www.numdam.org/item/M2AN_2004__38_4_707_0/

[1] V.B. Andreev, On difference schemes with a splitting operator for general p-dimensional parabolic equations of second order with mixed derivatives. SSSR Comput. Math. Math. Phys. 7 (1967) 312-321. | MR 216784 | Zbl 0183.44702

[2] G.A. Baker, An implicit, numerical method for solving the two-dimensional heat equation. Quart. Appl. Math. 17 (1959/1960) 440-443. | MR 110208 | Zbl 0092.32902

[3] G.A. Baker and T.A. Oliphant, An implicit, numerical method for solving the two-dimensional heat equation. Quart. Appl. Math. 17 (1959/1960) 361-373. | MR 110207 | Zbl 0092.32901

[4] G. Birkhoff and R.S. Varga, Implicit alternating direction methods. Trans. Amer. Math. Soc. 92 (1959) 13-24. | MR 105814 | Zbl 0093.31201

[5] G. Birkhoff, R.S. Varga and D. Young, Alternating direction implicit methods. Adv. Comput. Academic Press, New York 3 (1962) 189-273. | MR 168131 | Zbl 0111.31402

[6] P.R. Chernoff, Note on product formulas for operators semigroups. J. Functional Anal. 2 (1968) 238-242. | MR 231238 | Zbl 0157.21501

[7] P.R. Chernoff, Semigroup product formulas and addition of unbounded operators. Bull. Amer. Mat. Soc. 76 (1970) 395-398. | MR 257808 | Zbl 0193.42403

[8] B.O. Dia and M. Schatzman, Comutateurs semi-groupes holomorphes et applications aux directions alternées. RAIRO Modél. Math. Anal. Numér. 30 (1996) 343-383. | Numdam | MR 1391710 | Zbl 0853.47024

[9] E.G. Diakonov, Difference schemes with a splitting operator for nonstationary equations. Dokl. Akad. Nauk SSSR 144 (1962) 29-32. | MR 163445 | Zbl 0178.52001

[10] E.G. Diakonov, Difference schemes with splitting operator for higher-dimensional non-stationary problems. SSSR Comput. Math. Math. Phys. 2 (1962) 549-568. | Zbl 0208.42302

[11] J. Douglas, On numerical integration of by impilicit methods. SIAM 9 (1955) 42-65. | Zbl 0067.35802

[12] J. Douglas and H. Rachford, On the numerical solution of heat condition problems in two and three space variables. Trans. Amer. Math. Soc. 82 (1956) 421-439. | Zbl 0070.35401

[13] M. Dryja, Stability in W 2 2 of schemes with splitting operators. SSSR. Comput. Math. Math. Phys. 7 (1967) 296-302. | Zbl 0183.44802

[14] G. Fairweather, A.R. Gourlay and A.R. Mitchell, Some high accuracy difference schemes with a splitting operator for equations of parabolic and elliptic type. Numer. Math. 10 (1967) 56-66. | Zbl 0148.39403

[15] I.V. Fryazinov, Increased precision order economical schemes for the solution of parabolic type multi-dimensional equations. SSSR. Comput. Math. Math. Phys. 9 (1969) 1319-1326.

[16] Z.G. Gegechkori, J.L. Rogava and M.A. Tsiklauri, High-degree precision decomposition method for an evolution problem. Tbilisi, Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics 14 (1999) 45-48.

[17] Z.G. Gegechkori, J.L. Rogava and M.A. Tsiklauri, High degree precision decomposition formulas of semigroup approximation. Tbilisi, Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics 16 (2001) 89-92.

[18] Z.G. Gegechkori, J.L. Rogava and M.A. Tsiklauri, Sequention-Parallel method of high degree precision for Cauchy abstract problem solution. Minsk, Comput. Methods in Appl. Math. 1 (2001) 173-187. | Zbl 0978.65088

[19] Z.G. Gegechkori, J.L. Rogava and M.A. Tsiklauri, High degree precision decomposition method for the evolution problem with an operator under a split form. ESAIM: M2AN 36 (2002) 693-704. | Numdam | Zbl 1070.65562

[20] D.G. Gordeziani, On application of local one-dimensional method for solving parabolic type multi-dimensional problems of 2m-degree, Proc. of Science Academy of GSSR 3 (1965) 535-542.

[21] D.G. Gordeziani and A.A. Samarskii, Some problems of plates and shells thermo elasticity and method of summary approximation. Complex analysis and it's applications (1978) 173-186. | Zbl 0432.73007

[22] D.G. Gordeziani and H.V. Meladze, On modeling multi-dimensional quasi-linear equation of parabolic type by one-dimensional ones, Proc. of Science Academy of GSSR 60 (1970) 537-540. | Zbl 0222.35042

[23] D.G. Gordeziani and H.V. Meladze, On modeling of third boundary value problem for the multi-dimensional parabolic equations of arbitrary area by the one-dimensional equations. SSSR Comput. Math. Math. Phys. 14 (1974) 246-250. | Zbl 0278.35049

[24] A.R. Gourlay and A.R. Mitchell, Intermediate boundary corrections for split operator methods in three dimensions. Nordisk Tidskr. Informations-Behandling 7 (1967) 31-38. | Zbl 0235.65068

[25] N.N. Ianenko, On Economic Implicit Schemes (Fractional steps method). Dokl. Akad. Nauk SSSR 134 (1960) 84-86. | Zbl 0099.33502

[26] N.N. Ianenko, Fractional steps method of solving for multi-dimensional problems of mathematical physics. Novosibirsk, Nauka (1967).

[27] N.N. Ianenko and G.V. Demidov, The method of weak approximation as a constructive method for building up a solution of the Cauchy problem. Izdat. “Nauka”, Sibirsk. Otdel., Novosibirsk. Certain Problems Numer. Appl. Math. (1966) 60-83.

[28] T. Ichinose and S. Takanobu, The norm estimate of the difference between the Kac operator and the Schrodinger emigroup. Nagoya Math. J. 149 (1998) 53-81. | Zbl 0917.47041

[29] T. Ichinose and H. Tamura, The norm convergence of the Trotter-Kato product formula with error bound. Commun. Math. Phys. 217 (2001) 489-502. | Zbl 0996.47046

[30] V.P. Ilin, On the splitting of difference parabolic and elliptic equations. Sibirsk. Mat. Zh 6 (1965) 1425-1428.

[31] K. Iosida, Functional analysis. Springer-Verlag (1965).

[32] T. Kato, The theory of perturbations of linear operators. Mir (1972).

[33] A.N. Konovalov, The fractional step method for solving the Cauchy problem for an n-dimensional oscillation equation. Dokl. Akad. Nauk SSSR 147 (1962) 25-27. | Zbl 0156.33103

[34] S.G. Krein, Linear equations in Banach space. Nauka (1971). | MR 374949

[35] A.M. Kuzyk and V.L. Makarov, Estimation of an exactitude of summarized approximation of a solution of Cauchy abstract problem. Dokl. Akad. Nauk USSR 275 (1984) 297-301. | Zbl 0601.65047

[36] G.I. Marchuk, Split methods. Nauka (1988). | MR 986974

[37] G.I. Marchuk and N.N. Ianenko, The solution of a multi-dimensional kinetic equation by the splitting method. Dokl. Akad. Nauk SSSR 157 (1964) 1291-1292. | Zbl 0163.23201

[38] G.I. Marchuk and U.M. Sultangazin, On a proof of the splitting method for the equation of radiation transfer. SSSR. Comput. Math. Math. Phys. 5 (1965) 852-863. | Zbl 0162.47403

[39] D. Peaceman and H. Rachford, The numerical solution of parabolic and elliptic differential equations. SIAM 3 (1955) 28-41. | Zbl 0067.35801

[40] M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. New York-London, Academic Press [Harcourt Brace Jovanovich, Publishers] (1975). | MR 493420 | Zbl 0308.47002

[41] J.L. Rogava, On the error estimation of Trotter type formulas in the case of self-Andjoint operator. Functional analysis and its aplication 27 (1993) 84-86. | Zbl 0814.47050

[42] J.L. Rogava, Semi-discrete schemes for operator differential equations. Tbilisi, Georgian Technical University press (1995).

[43] A.A. Samarskii, On an economical difference method for the solution of a multi-dimensional parabolic equation in an arbitrary region. SSSR Comput. Math. Math. Phys. 2 (1962) 787-811. | Zbl 0273.65078

[44] A.A. Samarskii, On the convergence of the method of fractional steps for the heat equation. SSSR Comput. Math. Math. Phys. 2 (1962) 1117-1121. | Zbl 0143.17503

[45] A.A. Samarskii, Locally homogeneous difference schemes for higher-dimensional equations of hyperbolic type in an arbitrary region. SSSR Comput. Math. Math. Phys. 4 (1962) 638-648. | Zbl 0273.65080

[46] A.A. Samarskii, P.N. Vabishchevich, Additive schemes for mathematical physics problems. Nauka (1999). | MR 1788271 | Zbl 0963.65091

[47] Q. Sheng, Solving linear partial differential equation by exponential spliting. IMA J. Numerical Anal. 9 (1989) 199-212. | Zbl 0676.65116

[48] R. Temam, Sur la stabilité et la convergence de la méthode des pas fractionnaires. Ann. Mat. Pura Appl. 4 (1968) 191-379. | Zbl 0174.45804

[49] H. Trotter, On the product of semigroup of operators. Proc. Amer. Mat. Soc. 10 (1959) 545-551. | Zbl 0099.10401