In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
Keywords: thermoviscoelasticity, dynamic contact problem, finite element approximation, numerical simulations
@article{M2AN_2004__38_4_691_0,
author = {Copetti, Maria I. M.},
title = {Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {691--706},
year = {2004},
publisher = {EDP Sciences},
volume = {38},
number = {4},
doi = {10.1051/m2an:2004029},
mrnumber = {2087730},
zbl = {1080.74036},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2004029/}
}
TY - JOUR AU - Copetti, Maria I. M. TI - Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 691 EP - 706 VL - 38 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004029/ DO - 10.1051/m2an:2004029 LA - en ID - M2AN_2004__38_4_691_0 ER -
%0 Journal Article %A Copetti, Maria I. M. %T Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 691-706 %V 38 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004029/ %R 10.1051/m2an:2004029 %G en %F M2AN_2004__38_4_691_0
Copetti, Maria I. M. Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 691-706. doi: 10.1051/m2an:2004029
[1] , Linear thermoelasticity, in Handbuch der physik, C. Truesdell Ed., VIa/2 (1972) 297-345.
[2] , A one-dimensional thermoelastic problem with unilateral constraint. Math. Comp. Simul. 59 (2002) 361-376. | Zbl
[3] and, Numerical solution of a thermoviscoelastic contact problem by a penalty method. SIAM J. Numer. Anal. 41 (2003) 1487-1504. | Zbl
[4] , Heat conduction with linear thermoelasticity. Springer, New York (1985). | Zbl | MR
[5] , Existence of solutions to a thermo-viscoelastic contact problem with Coulomb friction. Math. Mod. Meth. Appl. Sci. 12 (2002) 1491-1511.
[6] and, The solvability of a coupled thermoviscoelastic contact problem with small Coulomb friction and linearized growth of frictional heat. Math. Meth. Appl. Sci. 22 (1999) 1221-1234. | Zbl
[7] and, A dynamic contact problem in thermoelasticity. Nonlinear Anal. 23 (1994) 883-898. | Zbl
[8] and, Evolution equations in thermoelasticity. Chapman & Hall/ CRC (2000). | Zbl | MR
[9] , A one-dimensional dynamic contact problem in linear viscoelasticity. Math. Meth. Appl. Sci. 13 (1990) 55-79. | Zbl
[10] and, A dynamic contact problem in one-dimensional thermoviscoelasticity. Nonlinear World 2 (1995) 355-385. | Zbl
[11] and, Numerical approximation of a wave equation with unilateral constraints. Math. Comp. 53 (1989) 55-79. | Zbl
Cité par Sources :





