A posteriori error analysis of the fully discretized time-dependent Stokes equations
ESAIM: Modélisation mathématique et analyse numérique, Volume 38 (2004) no. 3, pp. 437-455.

The time-dependent Stokes equations in two- or three-dimensional bounded domains are discretized by the backward Euler scheme in time and finite elements in space. The error of this discretization is bounded globally from above and locally from below by the sum of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.

DOI: 10.1051/m2an:2004021
Classification: 65N30, 65N15, 65J15
Keywords: time-dependent Stokes equations, a posteriori error estimates, backward Euler scheme, finite elements
@article{M2AN_2004__38_3_437_0,
     author = {Bernardi, Christine and Verf\"urth, R\"udiger},
     title = {A posteriori error analysis of the fully discretized time-dependent {Stokes} equations},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {437--455},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {3},
     year = {2004},
     doi = {10.1051/m2an:2004021},
     mrnumber = {2075754},
     zbl = {1079.76042},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2004021/}
}
TY  - JOUR
AU  - Bernardi, Christine
AU  - Verfürth, Rüdiger
TI  - A posteriori error analysis of the fully discretized time-dependent Stokes equations
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2004
SP  - 437
EP  - 455
VL  - 38
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2004021/
DO  - 10.1051/m2an:2004021
LA  - en
ID  - M2AN_2004__38_3_437_0
ER  - 
%0 Journal Article
%A Bernardi, Christine
%A Verfürth, Rüdiger
%T A posteriori error analysis of the fully discretized time-dependent Stokes equations
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2004
%P 437-455
%V 38
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2004021/
%R 10.1051/m2an:2004021
%G en
%F M2AN_2004__38_3_437_0
Bernardi, Christine; Verfürth, Rüdiger. A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: Modélisation mathématique et analyse numérique, Volume 38 (2004) no. 3, pp. 437-455. doi : 10.1051/m2an:2004021. http://www.numdam.org/articles/10.1051/m2an:2004021/

[1] A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. (to appear). | Zbl

[2] C. Bernardi and B. Métivet, Indicateurs d'erreur pour l'équation de la chaleur. Rev. Européenne Élém. Finis 9 (2000) 425-438. | Zbl

[3] C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation. P.-L. George Ed., Hermès (2001) 251-278.

[4] M. Bieterman and I. Babuška, The finite element method for parabolic equations. I. A posteriori error estimation. Numer. Math. 40 (1982) 339-371. | Zbl

[5] M. Bieterman and I. Babuška, The finite element method for parabolic equations. II. A posteriori error estimation and adaptive approach. Numer. Math. 40 (1982) 373-406. | Zbl

[6] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl

[7] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | Zbl

[8] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. | Zbl

[9] V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, Lect. Notes Math. 749 (1979). | Zbl

[10] J.G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353-384. | Zbl

[11] C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277-291. | Zbl

[12] M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | Zbl

[13] J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213-231. | Zbl

[14] R. Temam, Theory and Numerical Analysis of the Navier-Stokes Equations. North-Holland (1977). | Zbl

[15] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). | Zbl

[16] R. Verfürth, A posteriori error estimates for nonlinear problems: L r (0,T;W 1,ρ (Ω))-error estimates for finite element discretizations of parabolic equations. Numer. Methods Partial Differential Equations 14 (1998) 487-518. | Zbl

[17] R. Verfürth, A posteriori error estimates for nonlinear problems 67 (1998) 1335-1360. | Zbl

[18] R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695-713. | Numdam | Zbl

[19] R. Verfürth, A posteriori error estimation techniques for non-linear elliptic and parabolic pdes, Rev. Européenne Élém. Finis 9 (2000) 377-402. | Zbl

Cited by Sources: