First-order accurate monotone conservative schemes have good convergence and stability properties, and thus play a very important role in designing modern high resolution shock-capturing schemes. Do the monotone difference approximations always give a good numerical solution in sense of monotonicity preservation or suppression of oscillations? This note will investigate this problem from a numerical point of view and show that a -point monotone scheme may give an oscillatory solution even though the approximate solution is total variation diminishing, and satisfies maximum principle as well as discrete entropy inequality.
Keywords: hyperbolic conservation laws, finite difference scheme, monotone scheme, convergence, oscillation
@article{M2AN_2004__38_2_345_0,
author = {Tang, Huazhong and Warnecke, Gerald},
title = {A note on $\sf (2K+1)$-point conservative monotone schemes},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {345--357},
year = {2004},
publisher = {EDP Sciences},
volume = {38},
number = {2},
doi = {10.1051/m2an:2004016},
mrnumber = {2069150},
zbl = {1075.65113},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2004016/}
}
TY - JOUR AU - Tang, Huazhong AU - Warnecke, Gerald TI - A note on $\sf (2K+1)$-point conservative monotone schemes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 345 EP - 357 VL - 38 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004016/ DO - 10.1051/m2an:2004016 LA - en ID - M2AN_2004__38_2_345_0 ER -
%0 Journal Article %A Tang, Huazhong %A Warnecke, Gerald %T A note on $\sf (2K+1)$-point conservative monotone schemes %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 345-357 %V 38 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004016/ %R 10.1051/m2an:2004016 %G en %F M2AN_2004__38_2_345_0
Tang, Huazhong; Warnecke, Gerald. A note on $\sf (2K+1)$-point conservative monotone schemes. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 2, pp. 345-357. doi: 10.1051/m2an:2004016
[1] and, Monotone difference approximations for scalar conservation laws. Math. Comput. 34 (1980) 1-21. | Zbl
[2] , High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357-393. | Zbl
[3] and, Uniformly high order accurate non-oscillatory schemes I. SIAM J. Numer. Anal. 24 (1987) 229-309. | Zbl
[4] , and, On finite difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math. 29 (1976) 297-322. | Zbl
[5] and, Unconditionally stable explicit schemes for the approximation of conservation laws, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, B. Fiedler Ed., Springer (2001). Also available at http://www.math.fu-berlin.de/danse/bookpapers/ | Zbl | MR
[6] , Accuracy of some approximate methods for computing the weaks solutions of a first-order quasi-linear equation. USSR. Comput. Math. Phys. 16 (1976) 105-119. | Zbl
[7] and, Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math. 79 (1998) 397-425. | Zbl
[8] , The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J. Numer. Anal. 34 (1997) 2306-2318 | Zbl
[9] , On the convergence of monotone finite difference schemes with variable spatial differencing. Math. Comput. 40 (1983) 91-106. | Zbl
[10] , The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs schemes. Math. Comput. 43 (1984) 353-368. | Zbl | MR
[11] and, The sharpness of Kuznetsov’s -error estimate for monotone difference schemes. Math. Comput. 64 (1995) 581-589. | Zbl | MR
[12] and, Viscosity methods for piecewise smooth solutions to scalar conservation laws. Math. Comput. 66 (1997) 495-526. | Zbl | MR
Cité par Sources :





