We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.
Keywords: nonlinear parabolic equations, local Lipschitz condition, continuous and discontinuous Galerkin methods, a priori error analysis, monotone operators
@article{M2AN_2004__38_2_261_0,
author = {Akrivis, Georgios and Makridakis, Charalambos},
title = {Galerkin time-stepping methods for nonlinear parabolic equations},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {261--289},
year = {2004},
publisher = {EDP Sciences},
volume = {38},
number = {2},
doi = {10.1051/m2an:2004013},
mrnumber = {2069147},
zbl = {1085.65094},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2004013/}
}
TY - JOUR AU - Akrivis, Georgios AU - Makridakis, Charalambos TI - Galerkin time-stepping methods for nonlinear parabolic equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 261 EP - 289 VL - 38 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004013/ DO - 10.1051/m2an:2004013 LA - en ID - M2AN_2004__38_2_261_0 ER -
%0 Journal Article %A Akrivis, Georgios %A Makridakis, Charalambos %T Galerkin time-stepping methods for nonlinear parabolic equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 261-289 %V 38 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004013/ %R 10.1051/m2an:2004013 %G en %F M2AN_2004__38_2_261_0
Akrivis, Georgios; Makridakis, Charalambos. Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 2, pp. 261-289. doi: 10.1051/m2an:2004013
[1] and, Linearly implicit methods for nonlinear parabolic equations. Math. Comp. 73 (2004) 613-635. | Zbl
[2] and, Convergence of a time discrete Galerkin method for semilinear parabolic equations. Preprint (2002).
[3] , and, Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67 (1998) 457-477. | Zbl
[4] , and, Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82 (1999) 521-541. | Zbl
[5] and, Continuous finite elements in space and time for the heat equation. Math. Comp. 52 (1989) 255-274. | Zbl
[6] and, Efficient higher order single step methods for parabolic problems: Part I, Math. Comp. 35 (1980) 655-677. | Zbl
[7] and, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | Zbl
[8] and, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. | Zbl
[9] , and, Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315-1325. | Zbl
[10] and, The discontinuous Galerkin method for semilinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 27 (1993) 35-54. | Zbl | Numdam
[11] , Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912-928. | Zbl
[12] and, A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67 (1998) 479-499. | Zbl
[13] and, A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999) 1779-1807. | Zbl
[14] and, Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations. Math. Comp. (to appear). | Zbl | MR
[15] and, On the stability of the discontinuous Galerkin method for the heat equation. SIAM J. Numer. Anal. 34 (1997) 389-401. | Zbl
[16] and, A posteriori error estimates for a class of dissipative schemes for nonlinear evolution equations. Preprint (2002).
[17] and, Interior maximum-norm estimates for finite element methods: Part II. Math. Comp. 64 (1995) 907-928. | Zbl
[18] , Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997). | Zbl | MR
Cité par Sources :





