Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) no. 6, p. 1013-1043
We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz-Zhu (ZZ) type error estimators are derived which originate from different backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second one, and both estimators can be expressed using some recovered gradient. The advantage of keeping two different analyses of the estimators is that they allow different and partially novel investigations and results. Both rigorous analytical approaches yield the equivalence of each ZZ error estimator to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. The anisotropic discretizations require analytical tools beyond the standard isotropic methods. Particular attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and confirmed by extensive numerical examples. They show that good results can be obtained for a large class of problems, demonstrated exemplary for the Poisson problem and a singularly perturbed reaction diffusion problem.
DOI : https://doi.org/10.1051/m2an:2003065
Classification:  65N15,  65N30,  65N50
@article{M2AN_2003__37_6_1013_0,
     author = {Kunert, Gerd and Nicaise, Serge},
     title = {Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {6},
     year = {2003},
     pages = {1013-1043},
     doi = {10.1051/m2an:2003065},
     zbl = {1077.65114},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2003__37_6_1013_0}
}
Kunert, Gerd; Nicaise, Serge. Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) no. 6, pp. 1013-1043. doi : 10.1051/m2an:2003065. http://www.numdam.org/item/M2AN_2003__37_6_1013_0/

[1] M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley (2000). | MR 1885308 | Zbl 1008.65076

[2] Th. Apel, Anisotropic finite elements: Local estimates and applications, Advances in Numerical Mathematics. Teubner, Stuttgart (1999). | MR 1716824 | Zbl 0934.65121

[3] I. Babuška, T. Strouboulis and C.S. Upadhyay, A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Comput. Methods Appl. Mech. Engrg. 114 (1994) 307-378.

[4] I. Babuška, T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj and K. Copps, Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Methods Eng. 37 (1994) 1073-1123. | Zbl 0811.65088

[5] S. Bartels and C. Carstensen, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: High order FEM. Math. Comp. 71 (2002) 971-994. | Zbl 0997.65127

[6] J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L 2 -projection in H 1 (ω). Math. Comp. 71 (2002) 147-156. | Zbl 0989.65122

[7] C. Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H 1 -stability of the L 2 -projection onto finite element spaces. Math. Comp. 71 (2002) 157-163. | Zbl 0989.65123

[8] C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math. Comp. 71 (2002) 945-969. | Zbl 0997.65126

[9] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[10] M. Dobrowolski, S. Gräf and C. Pflaum, On a posteriori error estimators in the finite element method on anisotropic meshes. Electron. Trans. Numer. Anal. 8 (1999) 36-45. | Zbl 0934.65122

[11] G. Kunert, A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes. Logos Verlag, Berlin (1999). Also Ph.D. thesis, TU Chemnitz, http://archiv.tu-chemnitz.de/pub/1999/0012/index.html | Zbl 0919.65066

[12] G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471-490, DOI 10.1007/s002110000170. | Zbl 0965.65125

[13] G. Kunert, A local problem error estimator for anisotropic tetrahedral finite element meshes. SIAM J. Numer. Anal. 39 (2001) 668-689. | Zbl 1004.65112

[14] G. Kunert, A posteriori L 2 error estimation on anisotropic tetrahedral finite element meshes. IMA J. Numer. Anal. 21 (2001) 503-523. | Zbl 0993.65118

[15] G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15 (2001) 237-259. | Zbl 1049.65121

[16] G. Kunert and S. Nicaise, Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes, preprint SFB393/01-20, TU Chemnitz, July 2001. Also http://archiv.tu-chemnitz.de/pub/2001/0059/index.html

[17] G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86 (2000) 283-303, DOI 10.1007/s002110000152. | Zbl 0964.65120

[18] L.A. Oganesyan and L.A. Rukhovets, Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan (1979), in Russian. | MR 584442 | Zbl 0357.65088

[19] G. Raugel, Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci. Paris, Sér. I Math 286 (1978) A791-A794. | Zbl 0377.65058

[20] R. Rodriguez, Some remarks on the Zienkiewicz-Zhu estimator. Numer. Meth. PDE 10 (1994) 625-635. | Zbl 0806.73069

[21] H.G. Roos and T. Linß, Gradient recovery for singularly perturbed boundary value problems II: Two-dimensional convection-diffusion. Math. Models Methods Appl. Sci. 11 (2001) 1169-1179. | Zbl 1014.65122

[22] K.G. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373-398. | Zbl 0873.65098

[23] O. Steinbach, On the stability of the L 2 -projection in fractional Sobolev spaces. Numer. Math. 88 (2001) 367-379. | Zbl 0989.65124

[24] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996). | Zbl 0853.65108

[25] Zh. Zhang, Superconvergent finite element method on a Shishkin mesh for convection-diffusion problems. Report 98-006, Texas Tech University (1998).

[26] O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 24 (1987) 337-357. | Zbl 0602.73063

[27] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Engrg. 101 (1992) 207-224. | Zbl 0779.73078