We introduce a modification of the Monge-Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.
Keywords: Monge-Kantorovitch problem, Wasserstein distance, augmented lagrangian method
@article{M2AN_2003__37_5_851_0,
author = {Benamou, Jean-David},
title = {Numerical resolution of an {\textquotedblleft}unbalanced{\textquotedblright} mass transport problem},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {851--868},
year = {2003},
publisher = {EDP Sciences},
volume = {37},
number = {5},
doi = {10.1051/m2an:2003058},
zbl = {1037.65063},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2003058/}
}
TY - JOUR AU - Benamou, Jean-David TI - Numerical resolution of an “unbalanced” mass transport problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 851 EP - 868 VL - 37 IS - 5 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2003058/ DO - 10.1051/m2an:2003058 LA - en ID - M2AN_2003__37_5_851_0 ER -
%0 Journal Article %A Benamou, Jean-David %T Numerical resolution of an “unbalanced” mass transport problem %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 851-868 %V 37 %N 5 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2003058/ %R 10.1051/m2an:2003058 %G en %F M2AN_2003__37_5_851_0
Benamou, Jean-David. Numerical resolution of an “unbalanced” mass transport problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 5, pp. 851-868. doi: 10.1051/m2an:2003058
[1] , A competitive (dual) simplex method for the assignment problem. Math. Program. 34 (1986) 125-141. | Zbl
[2] , On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134 (1998) 335-361. | Zbl
[3] , A domain decomposition method for the polar factorization of vector valued mappings. SIAM J. Numer. Anal. 32 (1995) 1808-1838. | Zbl
[4] and, Numerical resolution on a massively parallel computer of a test problem in meteorology using a domain decomposition algorithm, in First European conference in computational fluid dynamics. North Holland (1992).
[5] and, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère/transport problem. SIAM J. Appl. Math. 58 (1998) 1450-1461. | Zbl
[6] and, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375-393. | Zbl
[7] and, Mixed /Wasserstein Optimal Mapping Between Prescribed Densities Functions (submitted). | Zbl
[8] , and, Numerical resolution of a multiphasic optimal mass transport problem. Tech. Report INRIA RR-4022.
[9] , and, Shape Optimization Solutions via Monge-Kantorovich. C. R. Acad. Sci. Paris Sér. I 324 (1997) 1185-1191. | Zbl
[10] , Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991) 375-417. | Zbl
[11] , Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Comm. Pure Appl. Math. 52 (1999) 411-452. | Zbl
[12] , Extended Monge-Kantorovich theory. CIME 2001 lecture. | Zbl
[13] , Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math. 45 (1992) 1141-1151. | Zbl
[14] , Boundary regularity of maps with convex potentials. II. Ann. of Math. 144 (1996) 3, 453-496. | Zbl
[15] , Solution to a model of a front forced by deformation. Q. J. R. Met. Soc. 109 (1983) 565-573.
[16] , private communication.
[17] and, An extended Lagrangian theory of semigeostrophic frontogenesis. J. Atmopheric Sci. 41 (1984) 1477-1497.
[18] , Decomposition of weather forecast error using rearrangements of functions. (Preprint.)
[19] , Partial differential equations and Monge-Kantorovich mass transfer. Lecture notes. | Zbl
[20] and, Augmented Lagrangian methods. Applications to the numerical solution of boundary value problems. North-Holland Publishing Co. Studies in Mathematics and its Applications 15 (1983) 340. | Zbl | MR
[21] et al., Back to the early Universe by optimal mass transportation. Nature 417 (2002) 260-262.
[22] and, The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. | Zbl
[23] and, Shape recognition via Wasserstein distance. Quart. Appl. Math. 58 (2000) 705-737. | Zbl
[24] , On the time-continuous mass transport problem and its approximation by augmented Lagrangian techniques. SIAM J. Numer. Anal. 41 (2003) 382-399. | Zbl
[25] , Ph.D. dissertation (2002).
[26] , and, Mass preserving mapping and image registration. MICCAI (2001) 120-127. | Zbl
[27] and, A shortest augmenting path algorithm for dense and sparse linear assignment problem. Computing 38 (1987) 325-340. | Zbl
[28] , and, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17. | Zbl
[29] , Computing the Kantorovich distance for images. J. Math. Imaging Vision 9 (1998) 173-198. | Zbl
[30] , On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942) 199-201. | Zbl
[31] and, Approximation of Parabolic Equations based upon a Wasserstein metric. ESAIM: M2AN 33 (1999) 837-852. | Zbl | Numdam
[32] and, Determination of reflector surfaces from near-field scattering data. Inverse Problems 13 (1997) 363-373. | Zbl
[33] , Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001) 589-608. | Zbl
[34] , Utilisation de la distance de Wasserstein et application sismique. Rapport IUP Génie Mathématique et Informatique, Université Paris IX-Dauphine.
[35] , Mémoire sur la théorie des déblais et des remblais. Mem. Acad. Sci. Paris (1781).
[36] , The geometry of dissipative evolution equation: the porous medium equation. Comm. Partial Differential Equations 26 (2001) 101-174. | Zbl
[37] and, Mass transportation problems, in Theory, Probability and its Applications, Vol. I. Springer-Verlag, New York (1998) 508. | Zbl | MR
[38] , Generalized fluid flows, their approximation and applications. Geom. Funct. Anal. 4 (1994) 586-620. | Zbl
[39] , Topics in mass transport. Lecture notes (2000).
Cité par Sources :





