Fluid-particle shear flows
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 37 (2003) no. 4, p. 699-708

Our purpose is to estimate numerically the influence of particles on the global viscosity of fluid-particle mixtures. Particles are supposed to rigid, and the surrounding fluid is newtonian. The motion of the mixture is computed directly, i.e. all the particle motions are computed explicitly. Apparent viscosity, based on the force exerted by the fluid on the sliding walls, is computed at each time step of the simulation. In order to perform long-time simulations and still control the solid fraction, we assume periodicity of the flow in the shear direction. Direct simulations are based on the so-called Arbitrary lagrangian Eulerian approach, which we adapted to make it suitable to periodic domains. As a first step toward modelling of interacting red cells in the blood, we propose a simple model of circular particles submitted to an attractive force which tends to form aggregates.

DOI : https://doi.org/10.1051/m2an:2003052
Classification:  76T20,  65M60,  92-08
Keywords: Fluid-particle, ALE, finite element, shear flow
     author = {Maury, Bertrand},
     title = {Fluid-particle shear flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {4},
     year = {2003},
     pages = {699-708},
     doi = {10.1051/m2an:2003052},
     zbl = {1118.76357},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2003__37_4_699_0}
Maury, Bertrand. Fluid-particle shear flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 37 (2003) no. 4, pp. 699-708. doi : 10.1051/m2an:2003052. http://www.numdam.org/item/M2AN_2003__37_4_699_0/

[1] R. Folkersma, A.J.G. vanDiemen, J. Laven and H.N. Stein, Steady shear rheology of dilute polystyrene particle gels. Rheol. Acta 38 (1999) 257-267.

[2] R. Glowinski, T.-W. Pan, T.I. Hesla and D.D. Joseph, A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows. Int. J. Multiphas. Flow 25 (1999) 755. | Zbl 1137.76592

[3] H.H. Hu, Direct Simulation of Flows of Solid-Liquid Mixtures. Int. J. Multiphas. Flow 22 (1996) 335-352. | Zbl 1135.76442

[4] A.A. Johnson and T.E. Tezduyar, Simulation of Multiple Spheres Falling in a Liquid-Filled Tube. Comput. Methods Appl. M. 134 (1996) 351-373. | Zbl 0895.76046

[5] B. Maury, Direct Simulation of 2D Fluid-Particle Flows in Biperiodic Domains. J. Comp. Phys. 156 (1999) 325-351. | Zbl 0958.76045

[6] O. Pironneau, J. Liou, T. Tezduyar, Characteristic-Galerkin and Galerkin Least Squares Space-Time Formulations for the Advection-Diffusion Equation with Time-Dependent Domains. Comput. Meth. Appl. M. 100 (1922) 117-141. | Zbl 0761.76073