In this paper, we study the exterior boundary value problems of the Darwin model to the Maxwell's equations. The variational formulation is established and the existence and uniqueness is proved. We use the infinite element method to solve the problem, only a small amount of computational work is needed. Numerical examples are given as well as a proof of convergence.
Keywords: Darwin model, Maxwell's equations, exterior problem, infinite element method
@article{M2AN_2003__37_3_515_0,
author = {Ying, Lung-An and Li, Fengyan},
title = {Exterior problem of the {Darwin} model and its numerical computation},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {515--532},
year = {2003},
publisher = {EDP Sciences},
volume = {37},
number = {3},
doi = {10.1051/m2an:2003040},
mrnumber = {1994315},
zbl = {1031.35143},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2003040/}
}
TY - JOUR AU - Ying, Lung-An AU - Li, Fengyan TI - Exterior problem of the Darwin model and its numerical computation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 515 EP - 532 VL - 37 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2003040/ DO - 10.1051/m2an:2003040 LA - en ID - M2AN_2003__37_3_515_0 ER -
%0 Journal Article %A Ying, Lung-An %A Li, Fengyan %T Exterior problem of the Darwin model and its numerical computation %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 515-532 %V 37 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2003040/ %R 10.1051/m2an:2003040 %G en %F M2AN_2003__37_3_515_0
Ying, Lung-An; Li, Fengyan. Exterior problem of the Darwin model and its numerical computation. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 3, pp. 515-532. doi: 10.1051/m2an:2003040
[1] and, Finite element convergence for the Darwin model to Maxwell's equations. Math. Modelling Numer. Anal. 31 (1997) 213-250. | Zbl | Numdam
[2] and, An analysis of the Darwin model of approximation to Maxwell's equations. Forum Math. 4 (1992) 13-44. | Zbl
[3] and, Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1988). | Zbl | MR
[4] and, A well-posed problem for the exterior stokes equations in two and three dimensions. Arch. Ration. Mech. Anal. 114 (1991) 313-333. | Zbl
[5] and, A multidimensional quasineutral plasma simulation model. J. Comput. Phys. 29 (1978) 219-236. | Zbl
[6] ,The Mathematical Theory of Viscous Incompressible Flow. 2nd ed., Gordon and Breach, New York (1969). | Zbl | MR
[7] and, Physics and Partial Differential Equations. Higher Education Press, Beijing (1997).
[8] , Navier-Stokes Equations, Theory and Numerical Analysis. 3rd ed., North-Holland (1984). | Zbl | MR
[9] , Infinite element approximation to axial symmetric Stokes flow. J. Comput. Math. 4 (1986) 111-120. | Zbl
[10] , Infinite Element Methods. Peking University Press, Beijing and Vieweg and Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden (1995). | Zbl | MR
Cité par Sources :





