In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy's law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument. The uniqueness proof, by Holmgren's method, leads to work out a linear, strongly coupled, system of partial differential equations and boundary conditions.
Keywords: porous media, vertical compaction, sedimentary basins, fault lines modelling
@article{M2AN_2003__37_2_373_0,
author = {Gagneux, G\'erard and Masson, Roland and Plouvier-Debaigt, Anne and Vallet, Guy and Wolf, Sylvie},
title = {Vertical compaction in a faulted sedimentary basin},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {373--388},
year = {2003},
publisher = {EDP Sciences},
volume = {37},
number = {2},
doi = {10.1051/m2an:2003032},
mrnumber = {1991207},
zbl = {1048.35080},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2003032/}
}
TY - JOUR AU - Gagneux, Gérard AU - Masson, Roland AU - Plouvier-Debaigt, Anne AU - Vallet, Guy AU - Wolf, Sylvie TI - Vertical compaction in a faulted sedimentary basin JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 373 EP - 388 VL - 37 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2003032/ DO - 10.1051/m2an:2003032 LA - en ID - M2AN_2003__37_2_373_0 ER -
%0 Journal Article %A Gagneux, Gérard %A Masson, Roland %A Plouvier-Debaigt, Anne %A Vallet, Guy %A Wolf, Sylvie %T Vertical compaction in a faulted sedimentary basin %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 373-388 %V 37 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2003032/ %R 10.1051/m2an:2003032 %G en %F M2AN_2003__37_2_373_0
Gagneux, Gérard; Masson, Roland; Plouvier-Debaigt, Anne; Vallet, Guy; Wolf, Sylvie. Vertical compaction in a faulted sedimentary basin. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 373-388. doi: 10.1051/m2an:2003032
[1] and, Uniqueness generalizated solutions of degenerate problem in two-phase filtration. Numerical methods mechanics in continuum medium. Collection Sciences Research, Sbornik, t. 15, No. 6 (1984) 15-28 (in Russian). | Zbl
[2] , Adaptive mesh finite element method for the sedimentary basin problem. In honour of Academician Nicolae Dan Cristescu on his 70th birthday, Rev. Roumaine Math. Pures Appl. 45 (2000), No. 2 (2001) 171-181. | Zbl
[3] , Problèmes aux limites pour les équations aux dérivées partielles partielles du premier ordre à coefficients réels. Ann. Sci. École Norm. Sup. 3 (1970) 185-233. | Zbl | Numdam
[4] , and, Asymptotic analysis for periodic structures. North-holland, Amsterdam (1978). | Zbl | MR
[5] , http://www.ggl.ulaval.ca/personnel/bourque/intro.pt/science.terre.html.
[6] , Analyse fonctionnelle - Théorie et applications. Masson, Paris (1983). | Zbl | MR
[7] and, Handbook of Numerical Analysis. Vol. II, Finite Element Methods (Part 1). North Holland (1991). | MR
[8] and, Fast and slow compaction in sedimentary basins. SIAM J. Appl. Math. 59 (1999) 365-385. | Zbl
[9] , Sur l'analyse de modèles de la filtration diphasique en milieu poreux, in Équations aux dérivées partielles et applications : Articles dédiés à J.L. Lions. Gauthier-Villars, Elsevier (1998) 527-540. | Zbl
[10] and, Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière, Mathématiques & Applications No. 22. Springer-Verlag (1996). | Zbl
[11] , and, Modélisation et analyse mathématique d'un écoulement 2D monophasique dans un bassin sédimentaire faillé sous l'effet de la compaction verticale, Publication Interne du Laboratoire de Mathématiques Appliquées CNRS-ERS 2055, No. 2000-31 (2000).
[12] and, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1977). | Zbl | MR
[13] and, Induced anisotropy in large ice shields: theory and its homogenization. Contin. Mech. Thermodyn. 10 (1998) 293-318. | Zbl
[14] ,, and, Implementation of a three-dimensional hydrodynamic model for evolution of sedimentary basins. Comput. Math. Math. Phys. 38 (1998) 1138-1151. | Zbl
[15] , http://www.emse.fr/environnement/fiches/1_2_2.html.
[16] , Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | Zbl | MR
[17] ,,, and, Elastoplastic deformation of porous media applied to the modelling of compaction at basin scale. Marine and Petroleum Geology 15 (1998) 145-162.
[18] , An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sci. Norm. Sup. Pisa Cl. Sci. 17 (1963) 189-206. | Numdam | Zbl | EuDML
[19] , Écoulements de fluide, Compacité par entropie, Collection Recherche et Mathématiques Appliquées, No. 10. Masson (1989). | Zbl | MR
[20] , Contribution à l'étude de l'unicité pour des systèmes d'équations de conservation. Cas des écoulements diphasiques incompressibles en milieu poreux, Thèse de l'Université de Pau (1996).
[21] , Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Uspekhi Mat. Nauk 14 (1959) 165-170. | Zbl
[22] , Modélisation de la compaction dans les bassins sédimentaires : Influence d'un comportement mécanique tensoriel, Thèse de l'ENSAM (1998).
[23] and, Quantitative HC potential evaluation using 3D basin modelling application to Franklin structure, central Graben, North Sea. UK Marine and Petroleum Geology 17 (2000) 841-856.
[24] ,, and, A 3D basin model for hydrocarbon potential evaluation: Application to Congo offshore. Oil and Gas Science and Technology 55 (2000) 3-12.
[25] , and, A solid-fluid mixture model allowing for solid dilatation under external pressure. Contin. Mech. Thermodyn. 13 (2001) 287-306. | Zbl
[26] , Two-phase oil migration in compacting sedimentary basins modelled by the finite element method. Int. J. Numer. Anal. Methods Geomech. 21 (1997) 91-120. | Zbl
[27] ,, and, A model for compaction of sedimentary basins. Appl. Math. Modelling 14 (1990) 506-517. | Zbl
[28] and, Some properties of functions in and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations. Northeast. Math. J. 5 (1989) 395-422. | Zbl
[29] and, Domain decomposition methods applied to sedimentary basin modeling. Math. Comput. Modelling 30 (1999) 153-178. | Zbl
Cité par Sources :






