We consider the inverse problem of determining a crack submitted to a non linear impedance law. Identifiability and local Lipschitz stability results are proved for both the crack and the impedance.
Keywords: inverse problems, cracks
Jaoua, Mohamed  ; Nicaise, Serge 1 ; Paquet, Luc 
@article{M2AN_2003__37_2_241_0,
author = {Jaoua, Mohamed and Nicaise, Serge and Paquet, Luc},
title = {Identification of cracks with non linear impedances},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {241--257},
year = {2003},
publisher = {EDP Sciences},
volume = {37},
number = {2},
doi = {10.1051/m2an:2003033},
mrnumber = {1991199},
zbl = {1029.35221},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2003033/}
}
TY - JOUR AU - Jaoua, Mohamed AU - Nicaise, Serge AU - Paquet, Luc TI - Identification of cracks with non linear impedances JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 241 EP - 257 VL - 37 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2003033/ DO - 10.1051/m2an:2003033 LA - en ID - M2AN_2003__37_2_241_0 ER -
%0 Journal Article %A Jaoua, Mohamed %A Nicaise, Serge %A Paquet, Luc %T Identification of cracks with non linear impedances %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 241-257 %V 37 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2003033/ %R 10.1051/m2an:2003033 %G en %F M2AN_2003__37_2_241_0
Jaoua, Mohamed; Nicaise, Serge; Paquet, Luc. Identification of cracks with non linear impedances. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 241-257. doi: 10.1051/m2an:2003033
[1] , Stability for the crack determination problem, in Inverse problems in Mathematical Physics, L. Päıvaärinta and E. Somersalo Eds., Springer-Verlag, Berlin (1993) 1-8. | Zbl
[2] , and, Determining linear cracks by boundary measurements: Lipschitz stability. SIAM J. Math. Anal. 27 (1996) 361-375. | Zbl
[3] and, Unique determination of multiple cracks by two measurements. SIAM J. Control Optim. 34 (1996) 913-921. | Zbl
[4] and, Determining 2-dimensional cracks in 3-dimensional bodies: uniqueness and stability. Indiana Univ. Math. J. 46 (1997) 1-82. | Zbl
[5] and, Identification of planar cracks by overdetermined boundary data: inversion formulae. Inverse Problems 12 (1996) 553-563. | Zbl
[6] , and, On the inverse emerging plane crack problem. Math. Methods Appl. Sci. 21 (1998) 895-907. | Zbl
[7] , and, A semi-explicit algorithm for the reconstruction of 3D planar cracks. Inverse Problems 15 (1999) 67-78. | Zbl
[8] and, Identification problems in potential theory. Arch. Rational Mech. Anal. 101 (1988) 143-160. | Zbl
[9] , Boundary Integral Equation Methods for Solids and Fluids. Wiley, New York (1995). | Zbl
[10] and, A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurements. SIAM J. Math. Anal. 23 (1992) 950-958. | Zbl
[11] , Elliptic boundary value problems in corner domains. Smoothness and asymptotics of solutions. Springer Verlag, Berlin, Lecture Notes in Math. 1341 (1988). | Zbl | MR
[12] and, Probabilité et potentiel. Hermann (1975). | Zbl | MR
[13] and, Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile. Math. Methods Appl. Sci. 3 (1981) 70-87. | Zbl
[14] , Étude de l'identifiabilité et de la stabilité d'une fissure présentant une résistivité de contact. DEA de Mathématiques Appliquées, ENIT, Tunis (1997).
[15] and, Determining cracks by boundary measurements. Indiana Univ. Math. J. 38 (1989) 527-556. | Zbl
[16] , Elliptic problems in nonsmooth domains. Pitman, Boston (1985). | Zbl | MR
[17] and, On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points. Amer. Math. Soc. Transl. Ser. 2 123 (1984) 57-88. | Zbl
[18] and, Quelques résultats sur le contrôle par un domaine géométrique. Preprint, Université de Paris VI (1974). | MR
[19] , Boundary integral equations for mixed boundary value problems, screen and transmission problems in . Habilitationsschrift, TH Darmstadt, Germany (1984).
[20] , Boundary integral equations for screen problems in . Integral Equations Operator Theory 10 (1987) 236-257. | Zbl
[21] , Equations of Mathematical Physics. Marcel Dekker, New York (1971). | Zbl | MR
Cité par Sources :






