Vorticity dynamics and turbulence models for large-Eddy simulations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 37 (2003) no. 1, p. 187-207

We consider in this paper the problem of finding appropriate models for Large Eddy Simulations of turbulent incompressible flows from a mathematical point of view. The Smagorinsky model is analyzed and the vorticity formulation of the Navier-Stokes equations is used to explore more efficient subgrid-scale models as minimal regularizations of these equations. Two classes of variants of the Smagorinsky model emerge from this approach: a model based on anisotropic turbulent viscosity and a selective model based on vorticity angles. The efficiency of these models is demonstrated by comparisons with reference results on decaying turbulence experiments.

DOI : https://doi.org/10.1051/m2an:2003013
Classification:  35Q30,  81T80
Keywords: Navier-Stokes equations, large eddy simulation, subgrid-scale modeling, Smagorinsky model, selective anisotropic model
@article{M2AN_2003__37_1_187_0,
     author = {Cottet, Georges-Henri and Jiroveanu, Delia and Michaux, Bertrand},
     title = {Vorticity dynamics and turbulence models for large-Eddy simulations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {1},
     year = {2003},
     pages = {187-207},
     doi = {10.1051/m2an:2003013},
     zbl = {1044.35051},
     mrnumber = {1972658},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2003__37_1_187_0}
}
Cottet, Georges-Henri; Jiroveanu, Delia; Michaux, Bertrand. Vorticity dynamics and turbulence models for large-Eddy simulations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 37 (2003) no. 1, pp. 187-207. doi : 10.1051/m2an:2003013. http://www.numdam.org/item/M2AN_2003__37_1_187_0/

[1] AGARD, A selection of test cases for the evaluation of large-eddy simulations of turbulent flows. Advisory report no. 345 (1998).

[2] J.T. Beale, T. Kato and A. Majda, Remarks on the Breakdown of Smooth Solutions for the 3D Euler Equations. Springer-Verlag, Comm. Math. Phys. 94 (1984). | MR 763762 | Zbl 0573.76029

[3] H. Beirão Da Vega and L.C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows. Differential Integral Equations 15 (2002). | MR 1870646 | Zbl 1014.35072

[4] V. Borue and S.A. Orszag, Local energy flux and subgrid-scale statistics in three dimensional turbulence. J. Fluid Mech. 366 (1998). | MR 1637290 | Zbl 0924.76035

[5] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics. Springer-Verlag (1988). | MR 917480 | Zbl 0658.76001

[6] A. Chorin, Vorticity and Turbulence. Springer Verlag, Appl. Math. Sci. 103 (1994). | MR 1267050 | MR 1281384 | Zbl 0795.76002

[7] R.A. Clark, J.H. Ferziger and W.C. Reynolds, Evaluation of subgrid scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91 (1979). | Zbl 0394.76052

[8] G. Comte-Bellot and S. Corrsin, Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated isotropic turbulence. J. Fluid Mech. 48 (1971).

[9] P. Constantin, Geometric Statistic in turbulence. SIAM Rev. 36 (1994). | MR 1267050 | Zbl 0803.35106

[10] P. Constantin, Navier-Stokes Equations and Fluid Turbulence. Preprint arXiv:math.AP/0003235 (2000). | Zbl 1002.76038

[11] P. Constantin and Ch. Fefferman, Direction of Vorticity and the Problem of Global Regularity for The Navier-Stokes Equations. Indiana Univ. Math. J. 42 (1993). | Zbl 0837.35113

[12] P. Constantin, Ch. Fefferman and A. Majda, Geometric Constraints on Potentially Singular Solutions for the 3-D Euler Equations. Comm. Partial Differential Equations 21 (1996). | MR 1387460 | Zbl 0853.35091

[13] P. Constantin and C. Foias, Navier-Stokes Equations. Univ. of Chicago Press, Chicago, Chicago Lectures in Math. (1989). | Zbl 0687.35071

[14] G.-H. Cottet, Anisotropic Subgrid-Scale Numerical Schemes for Large Eddy Simulation of Turbulent Flows. Unpublished report (1997).

[15] G.-H. Cottet, D. Jiroveanu and B. Michaux, Simulation des grandes échelles : aspects mathématiques et numériques. ESAIM Proc. 11 (2002) 85-95. | Zbl 1116.76371

[16] G.-H. Cottet and O.V. Vasilyev, Comparison of Dynamic Smagorinsky and Anisotropic Subgrid-Scale Models, in Proceedings of the Summer Program, Center for Turbulence Research (1998).

[17] G.-H. Cottet and A.A. Wray, Anisotropic grid-based formulas for subgrid-scale models, in Annual Research Brief, Center for Turbulence Research, Stanford University and NASA Ames Research Center (1997).

[18] E. David, Modélisation des écoulements compressibles et hypersoniques : une approche instationnaire. Ph.D. thesis, INPG-LEGI Grenoble (1993).

[19] T. Dubois and F. Bouchon, Subgrid-scale models based on incremental unknowns for large eddy simulations, in Annual Research Brief, Center for Turbulence Research, Stanford University and NASA Ames Research Center (1998).

[20] F. Ducros, Simulation numérique directe et des grandes échelles de couches limites compressibles. Ph.D. thesis, INPG-LEGI Grenoble (1995).

[21] C. Foias, D. Holm and E. Titi, The three dimensional viscous Camassa-holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J. Dynam. Differential Equations 14 (2002). | Zbl 0995.35051

[22] G.P. Galdi and W.J. Layton, Approximating the larger eddies in fluid motion II: a model for space filtered flow. Math. Models Methods Appl. Sci. 10 (2000). | MR 1753115 | Zbl 1077.76522

[23] M. Germano, U. Piomelli, P. Moin and W.H. Cabot, A Dynamic Subgrid-Scale Eddy Viscosity Model. Phys. Fluids A 3 (1991). | Zbl 0825.76334

[24] T. Iliescu and P. Fischer, Large Eddy Simulation of Turbulent Channel Flows by the Rational LES Model. Preprint ANL/MCS-P932-0302 (2002).

[25] D. Jiroveanu, Analyse mathématique et numérique de certains modèles de viscosité turbulente. Ph.D. thesis, University Joseph Fourier Grenoble I (2002).

[26] A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30 (1941). | JFM 67.0850.06 | Zbl 0025.37602

[27] O.A. Ladyszenskaya, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breasch, New York (1969). | Zbl 0184.52603

[28] O.A. Ladyszenskaya, On the Dynamical System Generated by the Navier-Stokes Equations. English translation in J. Sov. Math. 3 (1975). | Zbl 0336.35081

[29] O.A. Ladyszenskaya, New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them, in Boundary Value Problems of Mathematical Physics V, Amer. Math. Soc., Providence, RI (1970). | Zbl 0202.37802

[30] A. Leonard, Energy cascade in large-eddy simulations of turbulent flows. Adv. Geophysics 18 (1974).

[31] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934). | JFM 60.0726.05

[32] M. Lesieur, Turbulence in Fluids. Kluwer Academic Publishers, Dordrecht (1997). | MR 1447438 | Zbl 0876.76002

[33] M. Lesieur and O. Metais, New trends in large eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28 (1996) 45-82.

[34] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603

[35] S. Liu, C. Meneveau and J. Katz, On the properties of similarity subgrid-scales models as deduced from measurements in a turbulent jet. J. Fluids Mech. 275 (1994) 83-119.

[36] J. Malek and J. Nečas, A Finite-Dimensional Attractor for Three-Dimensional Flow of Incompressible Fluids. J. Differential Equations 127 (1996). | MR 1389407 | Zbl 0851.35107

[37] J. Marsden and S. Skholler, Global Well-posedness for the Lagrangian Averaged Navier-Stokes (LANS) Equations on Bounded Domains. Meeting of Royal Society London (2000).

[38] J. Marsden, T. Ratiu and S. Skholler, The Geometry and Analysis of the Averaged Euler Equations and a New Diffeomorphism Group. Geom. Funct. Anal. 10 (2000). | MR 1779614 | Zbl 0979.58004

[39] O. Metais and M. Lesieur, Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239 (1992) 157-194. | Zbl 0825.76272

[40] K. Mosheini, S. Skholler, B. Kosovič, J. Marsden, D. Caratti, A. Wray and R. Rogallo, Numerical Simulations of Homogeneous Turbulence Using the Lagrangian Averaged Navier-Stokes Equations in Proc. CTR summer school (2000).

[41] C. Parès, Uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43 (1992). | MR 1284321 | Zbl 0739.35075

[42] U. Piomelli, Y. Yu and R.J. Adrian, Subgrid scale energy transfer and near-wall turbulence structure. Phys. Fluids 8 (1996) 215-224. | Zbl 1023.76554

[43] R.S. Rogallo and P. Moin, Numerical Simulation of Turbulent Flows. Annu. Rev. Fluid Mech. 16 (1984) 99-137. | Zbl 0604.76040

[44] J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review 91 (1963).

[45] C.G. Speziale, Turbulence modeling for time-dependent RANS and VLES: A review. AIAA Journal 36 (1998). | Zbl 0908.76075

[46] S. Stoltz and N.A. Adams, An Approximative Deconvolution Procedure for Large-Eddy Simulation. Phys. Fluids 11 (1999).

[47] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, Appl. Math. Sci. 68 (1988). | MR 953967 | Zbl 0662.35001

[48] B. Vreman, Direct and large-eddy simulation of the compressible turbulent mixing layer. Ph.D. thesis, University of Twente (1995).

[49] D.C. Wilcox, Turbulence Modeling CFD. DCW Industries Inc. (1993).

[50] E. Zeidler, Nonlinear Functional Analysis and its Applications. Springer-Verlag (1990). | Zbl 0684.47029