The treatment of “pinching locking” in 3D-shell elements
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) no. 1, p. 143-158
We consider a family of shell finite elements with quadratic displacements across the thickness. These elements are very attractive, but compared to standard general shell elements they face another source of numerical locking in addition to shear and membrane locking. This additional locking phenomenon - that we call “pinching locking” - is the subject of this paper and we analyse a numerical strategy designed to overcome this difficulty. Using a model problem in which only this specific source of locking is present, we are able to obtain error estimates independent of the thickness parameter, which shows that pinching locking is effectively treated. This is also confirmed by some numerical experiments of which we give an account.
DOI : https://doi.org/10.1051/m2an:2003015
Classification:  65N30,  74K25
@article{M2AN_2003__37_1_143_0,
     author = {Chapelle, Dominique and Ferent, Anca and Tallec, Patrick Le},
     title = {The treatment of ``pinching locking'' in $3D$-shell elements},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {1},
     year = {2003},
     pages = {143-158},
     doi = {10.1051/m2an:2003015},
     zbl = {1031.74046},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2003__37_1_143_0}
}
Chapelle, Dominique; Ferent, Anca; Tallec, Patrick Le. The treatment of “pinching locking” in $3D$-shell elements. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) no. 1, pp. 143-158. doi : 10.1051/m2an:2003015. http://www.numdam.org/item/M2AN_2003__37_1_143_0/

[1] K.J. Bathe, Finite Element Procedures. Prentice Hall (1996).

[2] K.J. Bathe, A. Iosilevich and D. Chapelle, An evaluation of the MITC shell elements. Comput. & Structures 75 (2000) 1-30.

[3] M. Bischoff and E. Ramm, Shear deformable shell elements for large strains and rotations. Internat. J. Numer. Methods Engrg. 40 (1997) 4427-4449. | Zbl 0892.73054

[4] M. Bischoff and E. Ramm, On the physical significance of higher order kinematic and static variables in a three-dimensional shell. Internat. J. Solids Structures 37 (2000) 6933-6960. | Zbl 1003.74045

[5] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). | MR 1115205 | Zbl 0788.73002

[6] D. Chapelle, Towards the convergence of 3D and shell finite elements? Proceedings: Enumath 2001 (in press). | Zbl pre02064908

[7] D. Chapelle and K.J. Bathe, Fundamental considerations for the finite element analysis of shell structures. Comput. & Structures 66 (1998) 19-36. | Zbl 0934.74073

[8] D. Chapelle and K.J. Bathe, The mathematical shell model underlying general shell elements. Internat. J. Numer. Methods Engrg. 48 (2000) 289-313. | Zbl 0991.74067

[9] D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells - Fundamentals. Springer-Verlag (2003). | MR 2143259 | Zbl 1103.74003

[10] D. Chapelle, A. Ferent and K.J. Bathe, 3D-shell finite elements and their underlying model. M3AS (submitted).

[11] P.G. Ciarlet, The Finite Element Methods for Elliptic Problems. North-Holland (1978). | Zbl 0999.65129

[12] N. El-Abbasi and S.A. Meguid, A new shell element accounting for through-thickness deformation. Comput. Methods Appl. Mech. Engrg. 189 (2000) 841-862. | Zbl 1011.74068

[13] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag (1986). | MR 851383 | Zbl 0585.65077

[14] R. Hauptmann, K. Schweizerhof and S. Doll, Extension of the ‘solid-shell' concept for application to large elastic and large elastoplastic deformations. Internat. J. Numer. Methods Engrg. 49 (2000) 1121-1141. | Zbl 1048.74041